
Symphony: Expressive Secure Multiparty Computation with
Coordination

Ian Sweeta, David Daraisb, David Heathc, William Harrisb, Ryan Estesd, and
Michael Hicksa,e
a University of Maryland, USA
b Galois, Inc., USA
c Georgia Institute of Technology, USA
d University of Vermont, USA
e Amazon, USA

Abstract
Context Secure Multiparty Computation (MPC) refers to a family of cryptographic techniques where mutually
untrusting parties may compute functions of their private inputs while revealing only the function output.
Inquiry It can be hard to program MPCs correctly and efficiently using existing languages and frameworks,
especially when they require coordinating disparate computational roles. How can we make this easier?
Approach We present Symphony, a new functional programming language for MPCs among two or more
parties. Symphony starts from the single-instruction, multiple-data (SIMD) semantics of prior MPC languages,
in which each party carries out symmetric responsibilities, and generalizes it using constructs that can
coordinate many parties. Symphony introduces first-class shares and first-class party sets to provide unmatched
language-level expressive power with high efficiency.
Knowledge Developing a core formal language called λ-Symphony, we prove that the intuitive, generalized
SIMD view of a program coincides with its actual distributed semantics. Thus the programmer can reason about
her programs by reading them from top to bottom, even though in reality the program runs in a coordinated
fashion, distributed across many machines. We implemented a prototype interpreter for Symphony leveraging
multiple cryptographic backends. With it we wrote a variety of MP programs, finding that Symphony can
express optimized protocols that other languages cannot, and that in general Symphony programs operate
efficiently.
Grounding In addition to developing the formal proofs, the prototype implementation, and the MPC program
case studies, we measured the performance of Symphony’s implementation on several benchmark programs
and found it had comparable performance Obliv-C, a state-of-the-art two-party MPC framework for C, when
running the same programs. We also measured Symphony’s performance on an optimized secure shuffle
protocol based on a coordination pattern that no prior language can express, and found it has far superior
performance to the standard alternative.
Importance Programming MPCs is in increasing demand, with a proliferation of languages and frameworks.
This work lowers the bar for programmers wanting to write efficient, coordinated MPCs that they can reason
about and understand. The work applies to developers and cryptographers wanting to design new applications
and protocols, which they are able to do at the language level, above the cryptographic details. The λ-
Symphony formalization of Symphony, and the proofs about it, are also surprisingly simple, and can be
a basis for follow-on formalization work in MPC and distributed programming. All code and artifacts are
available, open-source.

ACM CCS 2012
Security and privacy → Logic and verification;

Keywords secure multiparty computation, coordination, programming language, formal metatheory,
distributed programming

The Art, Science, and Engineering of Programming

Submitted January 1, 2023

Published February 15, 2023

doi 10.22152/programming-journal.org/2023/7/14
© Ian Sweet, David Darais, David Heath, William Harris, Ryan Estes, and Michael Hicks
This work is licensed under a “CC BY 4.0” license.
In The Art, Science, and Engineering of Programming, vol. 7, no. 3, 2023, article 14; 54 pages.

https://doi.org/10.22152/programming-journal.org/2023/7/14
https://creativecommons.org/licenses/by/4.0/deed.en
https://creativecommons.org/licenses/by/4.0/deed.en

Symphony: Expressive Secure Multiparty Computation with Coordination

1 Introduction

Secure Multiparty Computation (MPC) is a subfield of cryptography that allows
mutually untrusting parties to compute arbitrary functions of their private inputs
while revealing only the function output. That is, MPC allows parties to run programs
under encryption. MPC technology today is hundreds of millions of times faster than
technology from a mere 20 years ago, meaning that many more computations are now
feasible. Modern frameworks are also increasingly convenient, offering programmers
a familiar language in which to express their MPC programs [36, 2, 14, 39, 26, 32, 5].
Unfortunately, while these frameworks allow the programmer to express many

MPCs, they fall short when confronted with problems that require non-trivial coor-
dination. Overwhelmingly, MPC frameworks take the default view that all parties
perform the same synchronized activity, in the style of single-instruction multiple-
data (SIMD). This simplified view is not always appropriate, and in many scenarios
it is useful for parties to execute different computations. For example, suppose we
wish to implement a round-based card game where N players use MPC to jointly
shuffle and deal the cards. By using MPC, the parties ensure that the deck and the
players’ individual hands remain secret. At the same time, each party might choose
to play cards according to her own strategy, and so each party might carry out dif-
ferent actions, perhaps by interacting with a user via I/O. Moreover, a party might
drop out of the computation altogether once eliminated from the game. As another
example, suppose that a very large number of parties wish to provide inputs to a
privacy-preserving computation. In such situations, it is pragmatic for the parties to
elect a small committee to carry out the computation on their behalf. Doing this can
greatly aid efficiency, since the performance of most MPC primitives degrades as the
number of parties grows.
Most existing MPC frameworks offer no coordination features; non-synchrony is

handled by ad hoc mechanisms, or not at all. Ad hoc mechanisms can lead to program-
ming mistakes, and these mistakes can result in (potentially nondeterministic) hangs
or wrong answers. The language Wysteria [28] provides coordination support, but
lacks expressiveness and ergonomics. For example, individual parties may not delegate
computations to other parties, and MPCs must be expressed in a rigid sublanguage
that makes interleaving encrypted and plaintext computation unnecessarily awkward.

Our Approach We present Symphony, an expressive MPC language that provides
appropriate tools for coordinating MPCs with large numbers of parties. Symphony’s
most interesting language features are as follows:

Scoped parallel expression blocks, or par blocks, allow the programmer to easily
control which parties execute which code. The programmer annotates a par block
with the set of parties that should enter the block. The language ensures that parties
executing within the block agree on the logical values of local variables, so there is
no risk of deadlocks or undefined behavior. Crucially, in the style of choreographic
programming languages [8, 9, 10, 25], we prove that the developer can reason
about her program as if it runs single threaded.

14:2

Ian Sweet, David Darais, David Heath, William Harris, Ryan Estes, and Michael Hicks

Party sets are first-class values in the language: they can be put together and
computed on at run-time, and used to annotate par blocks, thereby supporting
highly expressive, dynamically determined coordination operations.
First-class shares model multiparty-encrypted values in a way that allow the pro-
grammer to freely delegate computation and reshare encrypted values from one
party set to another, and to reactively mix MPC operations with cleartext operations.

These features have previously appeared, in part, in other MPC frameworks: par
blocks and party sets are inspired by Wysteria, and first-class shares are inspired by
the programming style of EMP [36] and Obliv-C [39]. Symphony is the first MPC
language to carefully combine these features, and to generalize them, e.g., by allowing
re-sharing and delegating already encrypted values to a different set of parties, and
freely constructing and computing on party sets to refine coordinating actions. This
combination of features is crucial for writing protocols in which parties may freely
enter, leave, and shift the locus of cryptographic computations.

Contributions Our specific contributions are as follows.
We motivate the need for Symphony, describe its key features using examples,
and compare it to the state of the art (Sections 2 and 3).
We present a core formalism for Symphony, called λ-Symphony—syntax (Sec-
tion 4.1), single-threaded semantics (Section 4.2), and distributed semantics (Sec-
tion 5). We prove that the single-threaded semantics faithfully represents the
distributed semantics, and thus can be used as the basis for reasoning about a
Symphony program’s behavior (Section 6).
We describe our prototype implementation for Symphony, which leverages EMP [36]
and MOTION [5] as its cryptographic backends (Section 7).
We discuss 16 programs implemented in Symphony, showing that it provides
ergnomic and expressiveness benefits compared to prior languages (Section 8.1).
We show that despite its expressiveness, Symphony enjoys good performance. On
a set of kernel benchmarks running on a simulated LAN, Symphony takes a mean
1.15× the time taken by Obliv-C (Section 8.2).

Symphony is publicly available at https://github.com/plum-umd/symphony-lang.

2 Background and Related Work

This section presents some background on related MPC programming frameworks,
with detailed consideration of the problem of coordination.

2.1 Prior Frameworks, Broadly

Table 1 characterizes existing, prominent MPC frameworks according to features of the
underlying MPC protocol (columns 2–5) and the ways computations are programmed
(columns 6–7). As a representative example, here is “millionaires” in Obliv-C, in which
two parties, A and B, wish to learn who is richer without revealing their total wealth:

14:3

https://github.com/plum-umd/symphony-lang

Symphony: Expressive Secure Multiparty Computation with Coordination

Table 1 Comparing MPC frameworks. Proto indicates whether the underlying cryptog-
raphy mechanism uses garbled circuits (GC), linear secret sharing (LSS), or a
custom hybrid (Hy) protocol that leverages both; # indicates the number of par-
ties involved in a secure computation; TM indicates the threat model the protocol
addresses, either semi honest (S) ormalicious (M), or both; Dom indicates whether
the framework supports MPC over boolean (B) circuits, arithmetic (A) circuits, or
both; Type indicates if the MPC framework is a custom language (DSL), language
extension (Ext), or library (Lib); and Features indicates the extent to which
the framework supports reactive computations (R), delegation from IO parties to
compute parties (D), and synchronized randomness ($) among multiple parties.

Proto # TM Dom Type Features
R D $

EMP-toolkit [36] GC 2 S,M B Lib (C++)
Obliv-C [39] GC 2 S B Ext (C)
ObliVM [24] GC 2 S B DSL
TinyGarble [33] GC 2 S B Ext (Verilog)
Wysteria [28] LSS 2+ S B DSL
ABY [12] GC,LSS 2 S A,B Lib (C++)
MOTION [5] GC,LSS 2+ S A,B Lib (C++)
SCALE-MAMBA [2] Hy 2+ S,M A DSL
Sharemind [27] Hy 3 S A DSL
MPyC [32] LSS 3+ S A Lib (Python)
PICCO [40] Hy 3+ S A Ext (C)
Frigate [26] GC 2 S,M B DSL
CBMC-GC [14] GC 2 S,M B Ext (C)
Viaduct [1] GC,LSS 2 S A,B DSL
Symphony GC,LSS 2+ S A,B DSL

1 void millionaire(void* args) {

2 protocolIO* io = args;

3 obliv int v1 = feedOblivInt(io->mywealth, A);

4 obliv int v2 = feedOblivInt(io->mywealth, B);

5 obliv bool ge = v1 >= v2;

6 revealOblivBool(&io->cmp, ge, 0);

7 }

Both parties run this program, SIMD-style. Variables v1 and v2 are encrypted, as per
the obliv keyword. Function feedOblivInt sets the initial values of these variables.
On party A, line 3 encrypts the input stored in A’s copy of io->mywealth, while line 4
does likewise for B. Internally, the function will send its encrypted input to the other
party, which synchronously receives it; i.e., line 3 sends from A to B and line 4 from
B to A. Line 5 computes on these encrypted values (at both parties), with the result
itself being encrypted. Finally, revealOblivBool coordinates among the two parties to
decrypt the result; it is stored in each party’s &io->cmp.

Under the hood, these frameworks use different MPC protocols (e.g., 2-party garbled
circuits [37], N -party linear secret shares [16, 4], or hybrid [11] protocols), expose

14:4

Ian Sweet, David Darais, David Heath, William Harris, Ryan Estes, and Michael Hicks

various primitives operations (boolean, arithmetic or both), and consider different sorts
of adversary (a “semi-honest” protocol follower, or a “malicious” protocol subverter).

Sometimes influenced by under-the-hood features, the above-the-hood programma-
bility features are also different; Table 1 lists three: reactive MPC (R), delegation (D),
and synchronized randomness ($). Reactive MPCs are those that invoke the underlying
MPC protocol multiple times, where later invocations can leverage results revealed
by earlier ones. For example, Obliv-C allows reactive MPC, so we could extend our
millionaires example above to use the revealed &io->cmp in follow-on computation
involving other inputs from A and B. Reactive MPC is useful for optimization (e.g., joint
median [22] and private set intersection [20]) and interactivity (e.g., multi-round
card games where the deck is encrypted).

Delegation refers to the ability to specify IO parties that provide inputs and receive
outputs, but do not participate in the secure computation directly. Delegation is
imporant for scalability—an MPC protocol that is intractable to run on 100 parties
may be tractable to run by delegating to a committee of 3. Modern MPC protocols often
provide the cryptographic support needed for delegation (by additively sharing inputs
and outputs) but lack the requisite programming support to coordinate non-compute
parties, which is not a good match for the basic SIMD model (see Section 2.2).

Finally, synchronized randomness refers to multiple parties being able to efficiently
access the same stream of random numbers; this can be extremely useful in conjunction
with delegation to optimize reactive MPCs [19]. Many languages that don’t support
it could be extended to do so, denoted with a half-circle in the table. For the others:
CBMC-GC and TinyGarble compile to standard Boolean circuits, which do not have
a gate for uniform bit generation; PICCO and Sharemind are based on threshold
MPC protocols that require only a subset of the declared parties to execute, and
synchronizing among a dynamic subset efficiently would be nontrivial.

2.2 Coordination

A SIMD computation model means it’s easiest to specify parties that do the same
thing. But what if we want them to coordinate parties that should behave differently,
even based on dynamically determined information?

Pitfalls Delegation and reactive MPC are important coordinating mechanisms, but
are not entirely sufficient. Some frameworks provide low-level mechanisms for the
programmer to specify party-specific actions, but these are easy to misuse. To illustrate,
here’s an Obliv-C program in which <code> is executed only at party X :
if (ocCurrentParty() == X) { <code> }

Other Obliv-C constructs also take party identifiers to localize execution, e.g., readInt
reads from local storage on the identified party. Using such constructs requires care.
Suppose A wishes to share the encrypted result of computing f on its input a. The
following code to do so contains a bug:

14:5

Symphony: Expressive Secure Multiparty Computation with Coordination

1 int a;

2 readInt(&a, "input.txt", A);

3 obliv int share;

4 if (ocCurrentParty() == A) {

5 share = feedOblivInt(f(a), A);

6 }

7 ... // proceed with secure computation on f(a)

Due to the conditional on line 4, the share on line 5 will trigger a send on A but no
corresponding recv on B, causing A to block forever awaiting B’s response. We fix the
issue by dropping the conditional on line 4, so feedOblivInt is called at both parties.

1 int a;

2 readInt(&a, ..., A);

3 obliv int share = feedOblivInt(f(a), A);

The code no longer hangs on A, but now there is another problem: undefined behavior.
The call to readInt on line 2 initializes a on A but not on B. The call to f(a) causes
both A and B to read the value contained in a, causing undefined behavior on B. The
solution is to provide a dummy value for a when executing on B.1

1 int a;

2 readInt(&a, ..., A);

3 int fa = ocCurrentParty() == A ? f(a) : 0;

4 obliv int share = feedOblivInt(fa, A);

There is still a risk: f must not perform any communication among parties, otherwise
we will experience another coordination error like the one in the first example.

Three (or more) party coordination Coordination gets even more unwieldy when
writing MPCs for N ≥ 2 parties. In general, we might have dozens or more parties,
with interactions between overlapping sets of parties. Each party’s role may shift over
time, possibly dependent on prior computations. These complexities are perhaps the
reason that N -party languages like PICCO [40], Frigate [26], and SCALE-MAMBA [2]
do not even provide low-level coordination mechanisms.
Wysteria [28, 30] is unique in providing higher-level support for safe N -party

coordination. Here’s the integer sharing example from Section 2.2 in Wysteria.
1 let a =par({A})= read() in

2 let fa =par({A})= f a in

3 let b =par({B})= 0 in (* Dummy *)

4 let inp = (wire {A} fa) ++ (wire {B} b) in

5 let share =sec({A,B})= makesh inp[A] in

While all parties locally execute the same program, the let x =par(P)= e in ... an-
notation indicates that only parties in P should execute e; the rest will skip it. Party-
annotated expressions prevent coordination errors. For example, variable a, created
by A on line 1, may be accessed only when A alone is in scope, as on line 2. Wysteria’s

1We could have instead ensured that a is initialized to a dummy value on B. This works,
but when dealing with compound types (e.g. an array of integers) it requires allocating
memory on B for all of A’s input and initializing the memory with dummy values.

14:6

Ian Sweet, David Darais, David Heath, William Harris, Ryan Estes, and Michael Hicks

type system will reject programs that try to do otherwise. When variables are visible to
more than one party, Wysteria’s design ensures that all parties agree on their contents.
Wysteria also provides an annotation to specify an MPC: let x = sec(P) e in ...

says that the parties in P should jointly execute e as an MPC. When reached at
run-time, the Wysteria interpreter translates e to a circuit and executes it with the
GMW protocol, revealing the result to all parties. Inputs are specified as wire bundles,
created via syntax wire P e; these are essentially maps from parties to values, with
the mapped-to value visible only to the keying party. Parties package their inputs
in a bundle (as on line 4) which can then be accessed within sec expressions via
array-index notation (line 5, which gets A’s input). Rather than immediately reveal
the final result, programmers can mark values as shares via makesh (line 5); these
shares can be referenced again in a later sec expression (among the same parties)
to continue performing MPC over them (as we will see later). Once again, party
annotations prevent accessing non-existent values. Moreover, the use of sec ensures
all parties will synchronize at an MPC, avoiding deadlocks/hangs.

While better than other frameworks, Wysteria’s coordination support has limitations.
Firstly, while Wysteria party sets are values, operations on them are so limited that the
sets can always be resolved statically when given a whole program. (See Appendix A.3
for more information.) Coordinating among parties chosen dynamically is important
for security (e.g., choosing random parties to prevent cheating) and interaction (e.g.,
the set of players in a card game). Additionally, Wysteria does not draw a distinction
between compute parties and IO parties, which precludes support for delegation
even among static party sets. Wysteria shares cannot be re-shared to different parties
without decrypting them.

3 Symphony: Expressive, Coordinated MPC

Symphony is a domain-specific programming language for expressing MPCs of
N ≥ 2 parties by generalizing the standard SIMD-style view. It takes inspiration from
Wysteria’s approach to the coordination problem, providing similar safety guarantees,
but with significant enhancements to the language’s expressiveness and efficiency.
This section introduces Symphony through examples; the next few sections develop
it formally and prove its safety benefits.

3.1 Basics

Symphony is a dynamically typed functional programming language with support
for integers, pairs, variant (sum) types, lists, let-binding, pattern matching, (recursive)
higher-order functions, and (mutable) references and arrays.

Recall the millionaires example implemented in Obliv-C and shown in Section 2.1.
An analogous implementation in Symphony is as follows:

14:7

Symphony: Expressive Secure Multiparty Computation with Coordination

1 principal A B

2 def main () = par {A,B}

3 let a = par {A} read int from "input.txt" in

4 let b = par {B} read int from "input.txt" in

5 let v1 = share [gmw, int : {A} -> {A,B}] a in

6 let v2 = share [gmw, int : {B} -> {A,B}] b in

7 let ge = v1 >= v2 in

8 reveal [gmw, bool : {A,B} -> {A,B}] ge

As is standard, all parties run the same program (starting at main).

Par blocks Symphony uses par blocks to permit some, but not all, parties to execute
a part of the program. For example, when par {A} ... is reached on line 3, only the
listed party A in the set executes the subsequent code In this case, party A reads
an integer from the file input.txt on its local filesystem. Parties not in a par’s set skip
the code block, returning an opaque valueÆ which will cause an error if computed
upon (since no real value is available at that party).

Located data As Symphony programs are fundamentally distributed, data is located
at particular parties’ hosts. An important invariant is that when different hosts access
the same program variable they will see the same logical value, or else the whole
program will fail because at least one host sees a Æ. (Symphony also provides a
bundle abstraction like Wysteria’s to allow different parties to use the same variable to
hold different values.) As a result, parties are naturally coordinated, avoiding wrong
results, deadlocks, and hangs like those mentioned in Section 2.2.

Shares Encrypted values in Symphony are called shares, which we can think of as
secret shares among a particular set of parties. (Symphony implements both GMW
and Yao back ends.) We use share[φ,τ : P → Q] v to take value v now at P and
secret-share it among parties Q, where φ is the MPC protocol (e.g., gmw) and τ is
the type of the share’s contents. Oftentimes P is a single party and Q is a set. For
example, line 5 secret-shares A’s value a with both A and B, storing the share in v1.
This maintains the location invariant: parties A and B agree on the logical value of
v1—it is a share of the same value among those two parties. The share operation
requires all parties P ∪Q to be currently executing (ensured by the par on line 2) so
that P can transmit to each party in Q its share and know they are ready to receive it.
Each local executing party keeps track of the intersection of the sets of in-scope par

blocks in order to perform this check. Shares can be operated on like normal values
as long the sharing parties carry out the operation. For example, line 7 compares the
shared ints and stores the result in ge (also a share), whose logical value both A and
B will agree on.

Revelation While share converts its argument at P to shares at Q, reveal converts
shares at P to plaintext at Q. Line 8 converts the share ge at A and B to a plaintext
value sent to those same hosts. As with share, all parties in P ∪Q must be executing
the block or else induce an error.

14:8

Ian Sweet, David Darais, David Heath, William Harris, Ryan Estes, and Michael Hicks

Reasoning Although actual execution of the program occurs on multiple machines
communicating with each other, Symphony allows programmers to reason about their
code as if it was executed line-by-line on a single machine, which we call the “single
threaded interpretation.” We prove this is the case via three theorems in Section 6,
the proofs for which rely on key invariants on located data and shares. The first
theorem states that a program will terminate in the single threaded interpretation
if-and-only-if it terminates (implying no deadlock) in the actual execution. This is
useful for debugging, e.g., if the program terminates with synthetic input in a single-
threaded simulation (which our implementation provides), and termination is not
dependent on input data, then the actual execution of the distributed program on
secret input is guaranteed to both terminate and never deadlock. The second and
third theorems establish a similar correspondence but for executions that are halted
due to a runtime error detected by Symphony—e.g., due to a party accessing a
variable containingÆ or executing a share in which parties are missing—essentially
showing that the single threaded execution will detect such errors if-and-only-if at
least one of the participants in the actual execution would detect the same error. This
allows the programmer to reason about failure in the actual distributed execution via
the much simpler failure semantics of the single threaded interpretation. (A static
type system could be developed to prevent the possibility of failure altogether, but
making it suitably expressive would be very challenging, and so remains future work.)

3.2 Advanced Coordination

Symphony supports advanced coordination patterns using first-class shares and
first-class party sets, combined with standard functional programming constructs.

First-class shares While prior languages support shares as data, they restrict their
creation and operations on them, i.e., they are not truly first class. Symphony is
more flexible, allowing shares to be delegated and reshared. To support delegation, we
can write share[φ,τ : {p} →Q] v for each IO party p to share its input with compute
parties Q, who will then compute and share the final result with each p. Unlike prior
systems, there is no need for p to be a member of Q. To support resharing, we give
shares as inputs v to share[φ,τ : P →Q] v, rather than plaintext values.

First-class party sets Delegation and resharing are made more powerful through the
use of first-class party sets—sets like {A,B} are run-time values, not static annotations.
The following Symphony program delegates to parties E and F to compute whether
party A is the richest among parties A–D.

14:9

Symphony: Expressive Secure Multiparty Computation with Coordination

1 principal A B C D E F

2

3 -- read input at p, delegate to all in Q

4 def readShare Q p = par ({ p } \/ Q)

5 let i = par { p } read int from "input.txt" in -- file local to each p

6 share [gmw, int : { p } -> Q] i

7

8 -- delegate shares from each p in P to all in Q

9 def delegateShares P Q = map (readShare Q) (psetToList P)

10

11 def main () = par {A,B,C,D,E,F}

12 let sharesList = delegateShares {A,B,C,D} {E,F} in

13 let a = head sharesList in

14 let res = par {E,F} fold_list true (fun s res -> res && a >= s)

,→ sharesList in

15 reveal [gmw, bool : {E,F} -> {A,B,C,D}] res

The delegateShares function takes two party sets as inputs: P is the set of IO parties,
and Q is the set of compute parties. The function returns a list of shares, one for each
of the parties in P, located at parties Q. It computes this result via calling map over the
parties P, using readShare Q to read an input and share it to Q.

Line 12 computes shares for parties {A,B,C,D} and delegates them to {E,F}. Line 14
then directs {E,F} to fold over these shares, checking whether the A’s input is consis-
tently the largest. Line 15 reveals the result back to the IO parties.

Not shown here, Symphony allows a party set to be deconstructed via case, which
is useful for dynamically coordinating among parties, e.g., to elect a committee to
carry out a delegated MPC. The located-data invariant allows the choice of parties to
be reliably coordinated at run-time.

LWZ Resharing, delegation, and first-class party sets are crucial to implementing the
efficient secure shuffle computation developed by Laur, Willemson, and Zhang [23].
Here is a piece of the Symphony implementation of it (the full code is in Listing 4,
Appendix A.2).

1 def shuffleWith Q S sharesQ = par (Q \/ S)

2 let sharesS = share [gmw, array int : Q -> S] sharesQ in

3 share [gmw, array int : S -> Q] (shuffle S sharesS)

Q and S are both party sets and sharesQ is an array of int shares located at Q. Line 2
reshares sharesQ to parties S, and line 3 call shuffle to mix up those shares at S
before resharing the result back to Q. Language support for resharing is unique to
Symphony and critical for implementing LWZ. To the best of our knowledge, no other
MPC language can express this protocol, due to its coordination challenges.

3.3 Comparison to Related Work

Symphony is (partly) compared against related MPC frameworks in Table 1. It sur-
passes them all in terms of expressiveness. Like many frameworks, it supports more
than 2 parties, reactive MPC, and synchronized randomness. Like Wysteria, it supports
safe coordination via par blocks, but generalizes it: programs can pattern-match on

14:10

Ian Sweet, David Darais, David Heath, William Harris, Ryan Estes, and Michael Hicks

party sets (not just construct them), and encrypted values can be computed on directly
(no need for sec blocks), delegated, and reshared. The correspondence theorems we
prove between Symphony’s distributed and single-threaded semantics (Section 6) are
similar to the metatheory results of Wysteria, however the invariants on located data
are unique to Symphony and the theorems are adapted to Symphony’s dynamic
type system. In terms of implementation (Section 7), Symphony supports both garbled
circuits (for 2 parties) and secret shares (for 3 or more). All these features together
enable good performance.

One related work shown in Table 1 very different from the rest is Viaduct [1], which
compiles a Java-like language to secure distributed programs. Viaduct’s programming
model is higher-level than Symphony; computation/communication patterns are
synthesized based on security policies specified as information flow labels [31], rather
than specified directly. It also supports cryptographic schemes beyond MPC (e.g.,
commitments, zero-knowledge proofs). Symphony supports richer coordination
patterns than Viaduct (e.g., LWZ), due to its first-class principal sets, bundles, and par
blocks. Viaduct has no result corresponding to Symphony’s soundness guarantee
(Section 6), but has specific means to specify security policies, which may involve
declassification and endorsement. Symphony essentially takes an “ideal world”
approach, relying on the programmer to ensure a program does not release too much.

Symphony’s semantics of “generalized SIMD” bears resemblance to that of choreog-
raphy languages [8, 9, 10, 25]. Choreographic programs are conceptually sequential,
ensuring that send and receive operations are always matched up by combining
them into a single expression. Pirouette [18] is a typed choreographic functional
programming language which proves that the distributed deployment of well-typed
programs is deadlock free by design. Pirouette is able to prove strong metatheoretic
properties relating choreographies to their distributed deployment due to its static
typing and static party annotations.

4 λ-Symphony: Syntax and Semantics

λ-Symphony is a minimal core language which captures the essential features of
Symphony. This section presents its syntax and single-threaded (ST) semantics.

4.1 Syntax

The syntax of λ-Symphony is shown in Fig. 1. To simplify the formal semantics, the
syntax adheres to a kind of administrative normal form (ANF), meaning that most
expression forms operate directly on variables x , rather than subexpressions e, as is the
case in the actual implementation. We isolate atomic expressions a as a sub-category
of full expressions e; the former evaluate to a final result in one “small” step.

Most of the syntactic forms are standard. Binary operations apply either to integers
or shares (e.g., +, ×) or to party sets (e.g., ∪). Conditionals x ? x ⋄ x correspond
to multiplexor expressions (written mux if in Symphony). Pairs are accessed via
projection (e.g.,π1 〈1,2〉 evaluates to 1), while sums (aka variants or tagged unions) are

14:11

Symphony: Expressive Secure Multiparty Computation with Coordination

i ∈ Z integers
A, B, C ∈ party parties
m, p, q ∈ pset ≜ ℘(party) sets of parties
x , y, z ∈ var variables
⊙ ∈ bop binary ops (+, ×, ∪, ...)
a ∈ atom ::= x variable reference

| i integer literal
| p party set literal
| x ⊙ x binary operation
| x ? x ⋄ x conditional
| ιi x sum injection
| 〈x , x〉 pair creation
| πi x pair projection
| λz x . e (rec.) function def
| ref x reference creation
| !x dereference
| x := x reference assignment
| read read int input
| write x write output
| share[x → x] x share encrypted val.
| reveal[x → x] x reveal encrypted val.

e ∈ expr ::= a atomic expression
| case x { x̄ .e}{ x̄ .e} elim for sums, psets
| x x function call
| par x e parallel execution
| let x = e in e let binding

Figure 1 λ-Symphony formal syntax.

accessed via pattern matching (e.g., case ι1 0 {y. e1} {y. e2} evaluates to e1 wherein
y is substituted with 0). Party sets are also accessed via case and processed like
lists—the first branch handles the ∅ case, while the second binds two variables, one
for a selected party and the other for the rest of the set. Recursive functions are
written λz x . e; the function body e may refer to itself via variable z. λ-Symphony
also has mutable references, and primitives for I/O. λ-Symphony does not model
lists or bundles because they are easily encoded; we explain how in the Appendix. The
MPC-related constructs par, share, and revealmatch their Symphony counterparts;
the latter two elide the output type and protocol annotation (which are useful for an
implementation but unnecessary for formal modeling). Symphony’s implementation
generalizes other aspects of λ-Symphony, too, as discussed in Section 7; e.g., it
permits sharing values of any type, and doing case analysis on encrypted sums.

4.2 Overview

The ST semantics for λ-Symphony models all participating parties as if they were
executing in lockstep. We prove that the ST semantics faithfully models the distributed
(DS) semantics presented in Section 5, according to which parties may act inde-

14:12

Ian Sweet, David Darais, David Heath, William Harris, Ryan Estes, and Michael Hicks

ℓ ∈ loc memory locations
ψ ∈ prot ::= · cleartext

| enc#m encrypted
γ ∈ env ≜ var* value value environment
δ ∈ store ≜ loc* value value store
u ∈ loc-value ::= iψ integer/share value

| p party set value
| ιi v tagged union injection
| 〈v, v〉 pairs
| 〈λz x . e,γ〉 closures
| ℓ#m reference

v ∈ value ::= u@m located value
| Æ opaque value

$m ∈ loc-value→ loc-value

Æ$m ≜Æ (u@p)$m ≜
�

u$m@(p ∩m) if p ∩m ̸=∅
Æ if p ∩m=∅

Figure 2 λ-Symphony definitions and metafunctions used in formal semantics (partial).

pendently. Thus, the ST semantics can serve as the basis of λ-Symphony formal
reasoning, e.g., about correctness and security.
The main judgment ς −→ ς is a reduction relation between configurations ς. A

configuration is a 5-tuple comprising the current mode m, environment γ, store δ,
stack κ, and expression e. The mode is the set of parties computing e in parallel; we say
the parties A∈ m are present for a computation. Per Figure 2, environments are partial
maps from variables to values, and stores are partial maps from memory locations
to values; we discuss stacks shortly. The main judgment employs γ ⊢m δ, a ,→ δ, v,
which defines the reduction of atomic expressions a to values v. Selected rules for
both judgments are given in Figure 3; the full set of rules appears in the Appendix.

4.3 Values

Values v have one of two forms: u@m indicates that the located value u is only accessible
to A∈ m, e.g., because it was the result of evaluating e in mode m; whereasÆ is the
opaque value which is both unknown and inaccessible. Located values are defined in
Figure 2, including for numbers iψ, sets of parties p, sums ιi v, pairs 〈v, v〉, recursive
functions 〈λz x . e,γ〉 which include a closure environment γ, and memory locations
(i.e., pointers) ℓ#p. These are standard except for annotations ψ and #p.

The annotation #p to indicate the parties p that are co-creators of the referenced
memory, whereas ψ indicates the protocol of the annotated integer: · represents a
cleartext value (we write just i when the annotationψ is ·), whereas enc#p represents
an encrypted value shared among parties B ∈ p (a “share”). Thus, a value 1enc#q@q

14:13

Symphony: Expressive Secure Multiparty Computation with Coordination

γ ⊢m δ, a ,→ δ, v

ST-Var

γ ⊢m δ, x ,→ δ,γ(x)$m

ST-Lit

γ ⊢m δ, i ,→ δ, i@m
γ ⊢m δ, p ,→ δ, p@m

ST-Int-Binop

iψ1 @m= γ(x1)$m

iψ2 @m= γ(x2)$m ⊢m ψ

γ ⊢m δ, x1 ⊙ x2 ,→ δ, J⊙K(i1, i2)
ψ@m

ST-Ref
v = γ(x)$m

γ ⊢m δ,ref x ,→ {ℓ7→v}⊎δ,ℓ#m@m

ST-Deref
ℓ#q@m= γ(x)$m

γ ⊢m δ, !x ,→ δ,δ(ℓ)$m

ST-Assign
ℓ#m@m= γ(x1)$m

v = γ(x2)$m

γ ⊢m δ, x1 := x2 ,→ δ[ℓ7→v], v
ST-Read

|m|= 1

γ ⊢m δ,read ,→ δ, i@m

ST-Write
i@m= γ(x)$m |m|= 1

γ ⊢m δ,write x ,→ δ, 0@m
ST-Share

p@m= γ(x1)$m

q@m= γ(x2)$m

iψ@p = γ(x3)$p

⊢p ψ

q ̸= ∅
m = p ∪ q

γ ⊢m δ,share[x1→ x2] x3 ,→ δ, ienc#q@q

ST-Reveal
p@m= γ(x1)$m

q@m= γ(x2)$m

ienc#p@p = γ(x3)$p

q ̸=∅
m= p ∪ q

γ ⊢m δ,reveal[x1→ x2] x3 ,→ δ, i@q

ς −→ ς
ST-Par

p@m= γ(x)$m m∩ p ̸=∅

m,γ,δ,κ,par x e −→ m∩ p,γ,δ,κ, e
ST-ParEmpty
p@m= γ(x)$m m∩ p =∅ γ′ = {x ′ 7→Æ} ⊎ γ

m,γ,δ,κ,par x e −→ m,γ′,δ,κ, x ′

Figure 3 λ-Symphony single-threaded semantics, selected rules.

can be read as “an integer 1, encrypted (i.e., secret shared) between parties q, and
accessible to parties q.” The first q represents among whom is this value shared (de-
termined when the share is created), and the second q represents who has access to
this value (determined by the enclosing par blocks). Location annotations are only
used in the ST semantics in order to simulate the presence of multiple parties; they
are unused in the distributed semantics and final execution. On the other hand, the
enc#q and #p annotations are used during distributed execution to detect buggy
programs which fail to coordinate properly, e.g., if A alone attempts to do arithmetic
on a share owned by both A and B, or if only A attempts to write to a reference it
co-created with B.

4.4 Operational Rules

Now we consider some of the operational rules.

14:14

Ian Sweet, David Darais, David Heath, William Harris, Ryan Estes, and Michael Hicks

Literals, Variables, Binding, Computation Rule ST-Var retrieves a variable’s value from
the environment and (re)locates it to the current mode m via γ(x)$m. The function $m

is given in Figure 2. For values u@p, $m relocates them to p∩m, unless the intersection
is empty in which case the value is inaccessible, so it becomes Æ. Relocating is a
deep operation; u@p$m also relocates the contents u to u$m, which recurses over the
sub-terms of u. Relocation ensures that the retrieved value is compatible with m. A
value v is compatible with a set of parties m when it is accessible to some set of parties
p ⊆ m. Compatibility with the current mode is a general invariant of all of the rules.
Rule ST-Lit types integer and principal literals, annotating them with (compatible)
location m. The full definition of relocation appears in the Appendix.
Variables bound with let are managed using a stack κ, which is either the empty

stack ⊤ or a list of frames 〈let x =□ in e | m,γ〉 :: κ. To evaluate let x = e1 in e2,
we push frame 〈let x =□ in e2 | m,γ〉 and set the active expression to e1 (Rule ST-
Let-Push, not shown). When an expression evaluates to a value v, the topmost frame
〈let x =□ in e2 | m,γ〉 is popped and evaluation proceeds on e2 using saved mode
m and environment γ updated to map x to v (Rule ST-Let-Pop, not shown).
Rule ST-Int-Binop handles arithmetic over integers. This rule illustrates another

invariant that all elimination rules share. To compute on a value while running in mode
m requires that the value be accessible to all parties in m. We see this in premises
like iψ1 @m = γ(x1)$m, which locate the operated-on variable to current mode m
and then ensure that the value’s location is also m, i.e., all parties have access to the
computed-on value. Doing so ensures that these parties, when running in a distributed
setting with their own store, environment, etc. will agree on the result. For this rule in
particular, we also ensure that both integers have the same protocol ψ, and that this
protocol is compatible with mode m, written ⊢m ψ. Compatibility holds when ψ is
cleartext, and when it is enc#m, i.e., i is a share amongst all parties currently present.
The distributed semantics also uses compatibility checks to ensure parties are in sync.

Par mode Operationally, par x e evaluates e in mode m∩ p where p@m= γ(x)$m;
i.e., only those parties in p which are also present in m will run e. When m ∩ p is
non-empty, rule ST-Par directs e to evaluate in the refined mode. If m ∩ p is empty,
then per rule ST-ParEmpty, e is skipped and Æ is returned.2 Note that because the
stack tracks each frame’s mode, when the current expression completes the old mode
will be restored when a stack frame is popped.

Here is an example of how par mode and variable access interact.
par {A, B} let x = par {A} 1 in

let y = par {B} x in

let z = par {C} 2 in x

The outer par {A, B} evaluates its body in mode {A, B}, per rule ST-Par. Next, accord-
ing to rules ST-LetPush, ST-Par, and ST-Intwe evaluate 1 in mode m= {A, B}∩{A}= {A};
we bind the result 1@{A} to x in γ per rule ST-LetPop. Next, according to rules ST-

2 SinceÆ is not an expression—it is a value—we return a fresh variable and the environment
with that variable mapped toÆ.

14:15

Symphony: Expressive Secure Multiparty Computation with Coordination

LetPush, ST-Par and ST-Varwe evaluate x in mode m= {B}. Per rule ST-Var, we retrieve
value 1@{A} for x , and then ${B}(1@{A}) yields Æ as the result, which is bound to
y in γ per rule ST-LetPop. This result makes sense: Party B reads variable x whose
contents are only accessible to A, so all it can do is return the opaque value. Finally,
par {C} 2 evaluates toÆ according to rule T-ParEmpty, since m = {A, B} ∩ {C} = ∅.
This Æ result is bound to z per rule ST-LetPop, and the final result x , evaluated in
mode m= {A, B} is ${A,B}(1@{A}) = 1@{A} per rule ST-Var.

References Rule ST-Ref creates a fresh reference and returns a located pointer
annotated with the parties that created it. Rule ST-Deref takes a reference located
in the current mode m and returns the pointed-to contents made compatible with m.
Rule ST-Assign updates the store with the new value and returns it, but only works for
ℓ#p references where p = m, the current mode. Why? Consider the following example.

par {A, B} let x = ref 0 in

let = (par{A} x := 1) in
let y = !x in . . .

The variable x initially contains a reference ℓ#{A,B} because it was created in a
context with mode m= {A, B}. Then x is assigned to by A in the par expression on the
subsequent line. By rule ST-Assign, the creators of the reference #{A, B} must match
mode m to proceed, but since m is {A} the program is stuck. This is desirable because
to proceed would cause A’s and B’s views of the computation to get out of sync. When
we run this program at each of A and B separately, as part of the distributed semantics,
on A we would do the assignment but on B it would be skipped. As such, on A the
value of y would be 1 but on B it would be 0. If the continuation of the program in . . .
were to branch on y and then in one branch do some MPC constructs but not in the
other, then the two parties would become even further out of sync.

I/O Rules ST-Read and ST-Write handle I/O. They require the mode to be a singleton
party, and locate the resulting value at that singleton party. This is important for
ensuring that all parties agree on the contents of shared variables. In the semantics,
read nondeterministically returns any integer, which over-approximates the behavior
of reading a particular integer as input from the host environment.

Multiparty computation Party A creates encrypted values (i.e., shares) among parties
q using syntax share[x1 → x2] x3 handled by rule ST-Share. Variable x1 is the set
of input parties p; variable x2 is the (nonempty) set of parties who will hold shares
q ̸= ∅; and x3 is the value to be shared, known to the input parties p; if x3 is
already an encrypted share (among p) then this operation will reshare it among q.
The input parties p and share parties q must all be present in the mode m, and no
other parties may be present (so m= p ∪ q). Importantly, there is no requirement that
p ⊆ q—this means that parties p may delegate the secure computation to parties q
and not participate in it themselves. Both resharing and delegation are key strengths
of Symphony not present in existing MPC languages. The share expressions in LWZ
(Listing 4, Appendix A.2) (critically) leverage both of these features.

14:16

Ian Sweet, David Darais, David Heath, William Harris, Ryan Estes, and Michael Hicks

v̇ ∈ lval ::= iψ | p | ℓ#m | ιi v̇
| 〈v̇, v̇〉 | 〈λz x . e, γ̇〉 |Æ

ς̇ ∈ lconfig ::= m, γ̇, δ̇, κ̇, e
C ∈ dconfig ≜ party* lconfig

DS-Var

γ̇ ⊢m δ̇, x ,→ δ̇, γ̇(x)

DS-Int-Binop
iψ1 = γ̇(x1) iψ2 = γ̇(x2) ⊢m ψ

γ̇ ⊢m δ̇, x1 ⊙ x2 ,→ δ̇, J⊙K(i1, i2)
ψ

γ̇ ⊢m δ̇, a ,→ δ̇, v̇

ς̇ −→A ς̇

DS-Par
p = γ̇(x) A∈ p

m, γ̇, δ̇, κ̇,par x e −→A m∩ p, γ̇, δ̇, κ̇, e

DS-ParEmpty
p = γ̇(x) A /∈ p γ̇′ = {x ′ 7→Æ} ⊎ γ̇

m, γ̇, δ̇, κ̇,par x e −→A m, γ̇′, δ̇, κ̇, x ′
DS-Step

ς̇ −→A ς̇
′

{A 7→ ς̇} ⊎ C ⇝ {A 7→ ς̇′} ⊎ C
C ⇝ C

DS-Share
share[x1→ x2] x3 = C(m).e

p = C(m).γ̇(x1)
q = C(m).γ̇(x2)

iψ = C(p).γ̇(x3)

⊢p ψ

m = C(m).m
q ̸= ∅

m = p ∪ q

C ′ = {A 7→ (m, {x 7→ v̇} ⊎ γ̇, δ̇, κ̇, x)
| C(A) = (m, γ̇, δ̇, κ̇, e),
A∈ q =⇒ v̇ = ienc#q,
A∈ p ∧ A /∈ q =⇒ v̇ =Æ}

C0 ⊎ C ⇝ C0 ⊎ C ′

DS-Reveal
reveal[x1→ x2] x3 = C(m).e

p = C(m).γ̇(x1)
q = C(m).γ̇(x2)

ienc#p = C(p).γ̇(x3)

m= C(m).m
q ̸=∅

m= p ∪ q

C ′ = {A 7→ (m, {x 7→ v̇} ⊎ γ̇, δ̇, κ̇, x)
| C(A) = (m, γ̇, δ̇, κ̇, e),
A∈ q =⇒ v̇ = i,
A∈ p ∧ A /∈ q =⇒ v̇ =Æ}

C0 ⊎ C ⇝ C0 ⊎ C ′

Figure 4 λ-Symphony distributed semantics, selected rules. Note that judgment γ̇ ⊢m

δ̇, a ,→ δ̇, v̇ is referred to by the elided rule DS-LetPop of the ς̇ −→A ς̇ judgment,
analogously to the single threaded semantics in Fig. 3.

Per rule ST-Reveal, reveal[x1 → x2] x3 reveals a shared encrypted value among
parties p to a cleartext result at parties q ̸=∅, where x1 evaluates to p, x2 evaluates
to q, and x3 evaluates to the encrypted value. All parties p among which x3 is shared
must be present, as well as the recipients of the value q, and no other parties.

5 Distributed Semantics

This section presents λ-Symphony’s distributed (DS) semantics, modeling the commu-
nication and coordination needed for MPC. The next section proves the correspondence
of the ST semantics w.r.t. the DS semantics.

5.1 Configurations

A distributed configuration C collects the execution states of the individual parties
in an MPC. As shown at the top of Figure 4, it consists of a finite map from parties
to local configurations ς̇, which are 5-tuples consisting of (1) a mode m, (2) a local

14:17

Symphony: Expressive Secure Multiparty Computation with Coordination

environment γ̇, (3) a local store δ̇, (4) a local stack κ̇, and (5) an expression e.
Local environments, stores, and stacks are the same as their ST counterparts except
that instead of containing values v, they contain local values v̇, which lack location
annotations @m.

For a set of parties m wishing to jointly execute program e, the initial configuration
C0 will map each party A∈ m to a local configuration (m,∅,∅,⊤, e), where ∅ is the
empty function (used for the empty environment and store), ⊤ is the empty stack,
and e is the source program. Notice that each party tracks the global mode m in its
local configuration.

5.2 Operational Semantics

The DS semantics C ⇝ C ′ uses auxiliary judgments γ̇ ⊢m δ̇, a ,→ δ̇, v̇ and ς̇ −→A ς̇;
these are defined in part in Figure 4. The main rule DS-Step is used to execute a single
party, independently of the rest. The rule selects some party A’s local configuration
ς̇, steps it to ς̇′, and then incorporates that back into the distributed configuration.
This rule can be used whenever A’s active expression e is anything other than share

or reveal, which require synchronizing between multiple parties. Those two cases
use the rules DS-Share and DS-Reveal, respectively, discussed below.

Non-synchronizing expressions The rules for relation γ̇ ⊢m δ̇, a ,→ δ̇, v̇ are essentially
the same as those for the ST semantics, except that they operate on non-located data.
The figure shows two examples. Rule ST-Var’s conclusion locates the result at m via
γ(x)$m, but rule DS-Var’s conclusion simply returns γ̇(x). Similarly, rule ST-IntBinop’s
premise requires iψ1 @m= γ(x1)$m while rule DS-IntBinop’s premise simply requires
iψ1 = γ̇(x1). For elimination forms, a location mismatch in a ST rule would translate to
failed attempt to eliminateÆ in the DS rule. For example, if rule ST-IntBinop would
have failed because iψ1 was located not at m but at p ⊂ m instead, then rule DS-IntBinop
would fail for parties A∈ (m− p) since for these γ̇(x1) =Æ, which cannot be added
to another share. The check ⊢m ψ is present in both rules to prevent attempts to add
incompatible shares. Likewise, rules DS-Deref and DS-Assign (not shown) retain the
check from the ST versions that the reference owners are compatible with m.
Judgment ς̇ −→A ς̇ corresponds to ST judgment ς −→ ς, where annotation A

indicates the executing local party. The rules for both judgments are essentially the
same except for those handling par[x] e. Rule DS-Par evaluates to the expression e
so long as A∈ p, where p = γ̇(x), updating the global mode to m∩ p, just as the ST
semantics does. Rule DS-ParEmpty handles the case when A /∈ p, thus skipping e and
leaving global mode m as it is, evaluating to result x ′, which is a fresh variable bound
toÆ in γ̇′.

Synchronizing expressions Rules DS-Share and DS-Reveal are used to evaluate ex-
pressions share and reveal, respectively. These expressions require synchronizing
between multiple parties, transferring data from one party to the other(s), so the
rules manipulate multiple local configurations. But they are quite similar to their ST
counterparts.

14:18

Ian Sweet, David Darais, David Heath, William Harris, Ryan Estes, and Michael Hicks

 A ∈ loc-value→ lvalue ; value→ lvalueenv→ lenv ; store→ lstore ; stack→ lstack

iψ A ≜ iψ

p A ≜ p
(ιi v) A ≜ ιi v A

〈v2, v2〉 A ≜ 〈v1 A, v2 B〉
〈λz x . e,γ〉 A ≜ 〈λz x . e,γ A〉

ℓ#m A ≜ ℓ#m

u@p A ≜
�

u A if A∈ p
Æ if A /∈ p

Æ A ≜Æ

γ A(x)≜ γ(x) A

δ A(ℓ)≜ δ(ℓ) A

⊤ A ≜⊤ (〈let x =□ in e | m,γ〉 :: κ) A ≜ 〈let x =□ in e | m,γ A〉 :: κ A

(m,γ,δ,κ, e) ≜ {A 7→ m,γ A,δ A,κ A, e | A∈ m} ∈ config→ dconfig

Figure 5 Slicing metafunction; relates ST and DS semantics.

In the rules we write C(m) to refer to the set of configurations mapped to by
principals A ∈ m. When we write C(m).e = e′, we are saying that the expression
component (e) of each configuration in the set C(m) is equal to expression e′. For DS-
Share, e′ is share[x1 → x2] x3 and for DS-Reveal it is reveal[x1 → x2] x3. We
similarly insist that each party’s configuration agrees on the valuation of x1 to p
and x2 to q, which together comprise the agreed-upon mode m. For DS-Share, the
valuation of x3 must be an integer with a protocol ψ compatible with p: ⊢p ψ; for DS-
Reveal, the valuation of x3 for all sharing parties p must be an encrypted integer
shared amongst those parties. These conditions are sufficient to guarantee that the
share and reveal operations of the actual MPC backend complete successfully.3 The
updated configuration C ′ matches the original configuration C but updates the local
configuration for each party A∈ m to have expression component x , where x is a fresh
variable added to the store γ̇ to map to the communicated (cleartext or encrypted)
integer; those sharing parties A∈ p such that A /∈ q evaluate toÆ instead.

6 Single-Threaded Soundness

This section presents our main meta-theoretical results around single-threaded sound-
ness, which is the sense in which we can interpret a λ-Symphony program in terms
of its ST semantics, even though in reality it will execute in a distributed fashion.
Proofs are provided in Appendix B.2.

We relate a single-threaded configuration ς to a distributed one by slicing it, written
ς , which is defined in Figure 5. Each party A in the mode m of ς is mapped to its
local DS configuration consisting of m, expression e, and the sliced versions of the
environment γ, store δ, and stack κ of ς that are specific to A. Slicing captures the
simple idea that for a value u@p, if A ∈ p then A can access u, but if A /∈ p then it
cannot; A works much like ${A} but strips off all location annotations.

We can prove a full correspondence for programs whose execution trace concludes
in normal form that is a terminal state. A terminal ST state has an empty stack and

3 Note that in the actual implementation, each party A ∈ m merely needs to check that its
own view of m, p, and q is consistent per m= p∪ q—if not, as shown in the next section, it
has landed in a stuck configuration and can signal that MPC has failed with a type error.

14:19

Symphony: Expressive Secure Multiparty Computation with Coordination

has reached a value; a DS state is terminal if all of its local configurations are terminal
(see the Appendix. for a formal definition).

Theorem 6.1 (ST/DS Terminal Correspondence). If ς −→∗ ς′, then statements (1) and
(2) imply one another for any C:

1. ς′ is a terminal state and C = ς′ 2. ς ⇝∗ C and C is a terminal state

The proof follows from a forward simulation lemma, which establishes that for every
single-threaded execution there exists a compatible distributed one, and confluence,
which establishes that even though the distributed semantics is nondeterministic,
its final states are uniquely determined. We additionally prove two lemmas about
executions that diverge or get stuck.

Theorem 6.2 (ST/DS Strong Asymmetric Non-terminal Correspondence). The follow-
ing statements are true:
1. If ς reaches a stuck state (under⇝) then ς reaches a stuck state (under −→)
2. If ς divergent (under −→) then ς divergent (under⇝)

Theorem 6.2 does not rule out the possibility that ς gets stuck while ς never does.
Consider the program let x = par[A] <error> in par[B] <infinite loop>. In the
ST semantics this program gets stuck. In the DS semantics, A will only become locally
stuck while B runs forever.⁴ We prove that if an ST configuration gets stuck, then for
any reachable DS configuration there exists a reachable locally stuck state:

Theorem 6.3 (ST/DS Soundness for Stuck States). If ς −→∗ ς′ and ς′ is stuck, then
for every C where ς ⇝∗ C there exists a C ′ s.t. C ⇝∗ C ′ and C ′ is locally stuck.

It follows that if the ST semantics applied to ς detects a runtime error (i.e., gets
stuck), then (assuming a non-pathological scheduler) one of the local configurations
of ς will eventually detect a runtime failure (i.e., get locally stuck), too, at which
point an implementation could notify the other configurations of the problem.

In sum: the ST and DS semantics correspond for both terminating and non-terminating
programs, but with a local notion of “stuckness” applied to DS states.

7 Implementation

We implemented a Symphony interpreter in 4K lines of Haskell. The interpreter can
run programs in sequential mode for prototyping and debugging, and distributed
mode for actual MPC. Symphony adds a number of features beyond λ-Symphony,
including booleans and a conditional expression; nested pattern-matching on pairs,
sums, lists, principal sets and bundles; arrays (mutable vectors with O(1) lookup);
synchronized randomness; and implicit embedding of constants as shares. Symphony
supports semi-honest MPC over boolean circuits, supporting Yao’s 2-party protocol
with EMP toolkit [36] and the N -party GMW protocol with MOTION [5].

4 Examples like this are also the reason we cannot prove full bisimulation.

14:20

Ian Sweet, David Darais, David Heath, William Harris, Ryan Estes, and Michael Hicks

The Symphony interpreter also generalizes λ-Symphony by allowing mux, case,
share and reveal to operate recursively over on pairs, sums and lists. It adds mux-case
for case analysis on encrypted sums, which are represented with pairs: λ-Symphony
value ι0 v is represented as 〈true, 〈v,default〉〉 and value ι1 v is represented as
〈false, 〈default, v〉〉, with each of the components encrypted. The value default is
to allow case analysis to proceed on both branches of mux-case, as a kind of multi-
plexor. The precise value of default is determined when sharing, based on the type
annotation τ on share[φ,τ:P→Q] default.
We have implemented a standard library (about 800 LOC) for Symphony that

includes various data structures and coordination patterns, e.g., initializing a bundle
from a principal set, and bounded recursion for unrolling an MPC function. Ap-
pendix A.1 has more details about the implementation and the standard library’s
contents.

Symphony Runtime EMP and MOTION don’t support delegation or resharing, and
MOTION does not support reactive MPC. The Symphony runtime, implemented
in 2K lines of Rust, acts as a compatibility layer that enhances MPC backends with
necessary features. The runtime adds support for delegation and resharing through
semi-honest XOR sharing over Symphony parties and support for reactive MPC by
caching encrypted values.
Encrypted values in Symphony are represented abstractly. The values encrypted

with each protocol satisfy the Haskell equivalent of the following Java-ish interface.
1 public interface Enc <T> {

2 type Context;

3

4 // Turn the XOR share `share` into an abstract, encrypted `T`
5 void reflect(Context c, BaseValue share);

6

7 // Embed the cleartext constant `clear` as a `T`
8 void constant(Context c, BaseValue clear);

9

10 // Primitive Operations

11 T prim(Context c, Operation op, List<T> shares);

12

13 // Turn the abstract, encrypted `T` value, `enc`, into an XOR share

14 BaseValue reify(Context c, T enc);

15 }

To add a new protocol to Symphony, one need only provide a new implementation
of this interface. The type Context declaration on line 2 is not legal Java, and is
meant to be evocative of an associated type in Rust or a type family in Haskell.
Each protocol uniquely determines a type as its Context. This interface allows the
interpreter to ignore differences between MPC based on secret sharing and circuit
garbling. For example, the MOTION backend implements MPC lazily by building up a
circuit and executing it when a decryption is requested. In contrast, EMP implements
MPC eagerly by garbling and executing gates as they are created. Both of these
approaches, however, can be made to implement the interface above. Adding the
enhancements necessary to do so is the subject of the remainder of this section.

14:21

Symphony: Expressive Secure Multiparty Computation with Coordination

Figure 6 Runtime support for
delegation.

Delegation and Resharing The runtime adds support
for delegation and resharing through semi-honest
XOR sharing over Symphony parties. For exam-
ple, Figure 6 shows how a party A would delegate
their secret bitstring 0b111 to {B, C}. First, A gener-
ates two random XOR shares of her input, in this
case 0b010 and 0b101, and sends them to B and C .
Second, B and C convert their shares into the native
encrypted representation of the backend. We denote
a value encrypted in the backend by square brackets,
e.g. [0b101]. Third, B and C use the MPC backend to
compute the XOR of their encryped shares, yielding
A’s original input natively encrypted among {B, C}.
The resharing operation can be achieved in a simi-

lar way, converting natively encryped values to XOR shares and then following the
delegation procedure outlined above.

The delegation and resharing procedures are generic, treating the underlying MPC
backend as a black box and relying only on standard features. However, implementing
the procedures generically also fails to take advantage of optimizations that are
available when converting between specific protocols. Symphony does not implement
every optimal conversion procedure, but there is nothing in our approach preventing
us from doing so. Efficient conversion procedures for 2-party and N -party protocols
are well-documented in the MPC literature [12, 5].

Reactive MPC The Symphony runtime also adds support for reactive MPC to the
MOTION backend. An MPC context in MOTION, called a Party, is a C++ object that
manages the global state associated with the MPC. It contains information about the
current executing party, the total number of parties, how parties can be contacted (e.g.
via TCP sockets), a shared PRG, and a binary circuit composed of gates and wires.
When an encrypted value is created or computed, the Party object creates a new gate
which is added to the circuit. The actual encrypted value is a reference to the output
wire of the new gate. When the programmer has finished their MPC, they instruct the
Party object to execute the underlying circuit. At that point, the circuit is executed
using the GMW protocol and XOR shares can be extracted from encrypted values.

Unfortunately, after the Party is executed, MOTION does not allow us to reuse the
Party object for additional MPC: the Party object is effectively defunct. The ability
to continue performing MPC is precisely what is needed to support reactive MPC, in
which values are decrypted and then used to influence additional computation.

The runtime adds support for reactive MPC to MOTION by caching the XOR shares
resulting from one execution of a Party object, destroying it, and then creating a
new one. When we compute on encrypted values produced by the previous Party,
we provide the corresponding cached XOR shares to the new Party as input before
proceeding with the computation. While conceptually simple, it required considerable
engineering to achieve acceptable performance. For example, we had to modify
MOTION to add support for creating a Party object using existing TCP connections

14:22

Ian Sweet, David Darais, David Heath, William Harris, Ryan Estes, and Michael Hicks

Table 2 A collection of implemented MPC programs (described Appendix A.2 in detail) .#
indicates the number of parties. Features indicates features required to implement
the program: P for first-class party sets, R for reactive MPC, $ for synchronized
randomness, D for delegation, and S for resharing. Symphony, Obliv-C, and
Wysteria indicate the lines of code required (including the main harness), with
(+K) denoting additional lines of library code. ? means the program should be
supported but we have no example, ∗ means a 2-party (rather than N -party)
version should be supported, and empty indicates the program cannot be written
in that language. Non-blank, non-comment lines were counted using wc -l.

Program # Features Symphony Obliv-C Wysteria Description
hamming [14, 40] 2 16 44 ? Find the Hamming distance of two strings.
edit [39] 2 46 73 ? Find the edit distance, by dynamic pro-

gramming, of two strings.
bio-match [7] 2 29 73 ? Compute the minimum Euclidean distance

between a set of points (from A) and a sin-
gle point (from B) in 2D space.

db-analytics [7] 2 94 99 ? Compute the mean and variance over the
union and join of two databases.

gcd [21] 2 10 (+4) 39 22 GCD of two numbers via Euclid’s algorithm.
richest [28] N 6 (+7) 34 N -party variant of the Millionaire’s.
gps [28] N 21 (+11) 42 Compute the one-dimensional nearest

neighbor for each of N parties.
auction [28] N 13 (+4) 42 Compute a second-price auction, revealing

the second-highest bid to everyone and the
highest bidder to auctioneer.

median [28] 2 R 16 (+3) ? ? Compute the mixed-mode (reactive) me-
dian of a set of numbers.

intersect [28] 2 R 12 (+9) ? ? Naive private set intersection over two sets.
mmm N P,$,R 29 (+5) Use a comparison-based single-elimination

tournament to find the richest of N parties.
committee N P,D,$ 26 (+45) Elect a small committee of size K < N ; use-

ful for fair delegation from N to K parties.
waksman [34, 13] N $ 167 (+67) * Securely shuffle of an array, using N itera-

tions of a Waksman permutation network.
lwz [23] N P,$,S 20 (+76) Securely shuffle an array using N reshares

of a linear secret sharing scheme (LSSS).
trivial-doram [15, 6] N 23 * ? A library for Oblivious RAM, adapted to

MPC from trivial client-server ORAM.
shuffle-qs [17] (Listing 4) N P,D,$,S,R 54 (+76) Securely sort using Shuffle-Then-Sort with

lwz as the underlying secure shuffle and
QuickSort as the sorting algorithm.

(rather than MOTION creating its own). This ensured that TCP connections were
only established once for each pair of Symphony parties, rather than repeatedly by
MOTION whenever a new Party object was created (i.e. on each decryption).

8 Experimental Evaluation

This section shows, through a series of experiments and case studies, that Symphony
provides superior programming expressiveness and ergonomics compared to prior
systems, while maintaining competitive performance.

8.1 Expressiveness and Ergonomics

We discuss Symphony’s expressiveness and ergonomics benefits based on our ex-
perience implementing 16 programs from the MPC literature. The programs are

14:23

Symphony: Expressive Secure Multiparty Computation with Coordination

tabulated in Table 2. As points of comparison we consider if (or whether) versions
of these programs could be implemented in Wysteria [28, 30] and/or Obliv-C [39],
and whether they are N -party or 2-party programs. We categorize the Symphony
language features required to express the programs in the Features column: Reactive
MPC, Synchronized Randomness, and Delegation (all described in Table 1 in Section 2),
and First-Class Party Sets and Resharing (described in Section 3.2).

Expressiveness Of the sixteen programs, we believe that Obliv-C can express 9 and
Wysteria can express 11. This is because both languages lack some needed features.

Obliv-C only supports two parties, ruling out fundamentally N -party programs.
Obliv-C also lacks clean support for Coordination, as discussed in Section 2.2, but mmm,
committee, lwz, and shuffle-qs require secure computation over First-Class Party
Sets which are computed dynamically, based on values only available at runtime. Both
the mmm and committee benchmarks were designed by us, and contain coordination
patterns used to implement optimization techniques based on adversary structures [19].

Wysteria does not support First-Class Party Sets, Delegation, Resharing, or Synchro-
nized Randomness. Wysteria does support party set values, but provides expression
forms only for creating those values, not for computing with them. This precludes,
for example, dynamically choosing a subset of parties to shuffle inputs, as used in
LWZ. We discuss this serious limitation further in Appendix A.3. These limitations
make it impossible to express mmm, committee, waksman, lwz, and shuffle-qs. Ex-
tending Wysteria with Synchronized Randomness would be straightforward, which
would allow Wysteria to express waksman. The other programs still have barriers: they
all require First-Class Party Sets and committee, lwz, and shuffle-qs additionally
require Delegation or Resharing.

Ergonomics Symphony can also provide ergonomics benefits even when a program
could be expressed in another language. We use Wysteria as a point of comparison,
since it also has coordination features.

Like Symphony, and as described in Section 2.2, Wysteria coordinates parties by
specifying which parties should execute in a given lexical scope via let x =par(P)= e,
and where MPC should happen via let x =sec(P)= e. However, Wysteria does not
allow recursive function calls in sec scope, which makes secure algorithms requiring
bounded recursion awkward and inefficient.

Listing 1 The gcd program of Table 2 as written in Symphony.
1 def brec gcdr (a, b) =

2 mux if (a == 0) then b

3 else gcdr ((b % a), a)

4 def gcd = unroll gcdr (const 0) 93

14:24

Ian Sweet, David Darais, David Heath, William Harris, Ryan Estes, and Michael Hicks

Listing 2 The gcd program of Table 2 as written in Wysteria.
1 let gcdr i (sa, sb) =

2 if i == 0 then

3 let ret =sec({!A,!B})= makesh 0 in

4 ret

5 else

6 let r =sec({!A,!B})=

7 let (a, b) = (combsh sa, combsh sb) in

8 (makesh (b % a), makesh a) in

9 let sr = gcdr (i - 1) r in

10 let ret =sec{!A,!B})=

11 let a = combsh sa in

12 if (a == 0) then sb

13 else sr

14 in ret

15 let gcd = gcdr 93

Consider the gcd function in Listings 1 and 2. This program computes the GCD
of two encrypted integers among {A,B} in Symphony and Wysteria, respectively.
The Symphony implementation is idiomatic and efficient, thanks to flexible first-
class shares. By contrast, Wysteria’s implementation requires multiple sec blocks
due to secure computation both before the call to gcdr (b % a on line 8) and after
(if (a == 0) on line 12). Note that there is no danger of a divide-by-zero on line 8—
the encrypted operation b % a is total and evaluates to b when a is 0. The gcd function
is recursive over encrypted values, so we must bound the recursion with a public upper
bound (here, 93) so that it can be expressed as a circuit. Symphony has a special brec
keyword that facilitates this: def brec gcdr a b expands into def gcdr gcdr a b,
with the gcdr parameter shadowing the recursive binding of the same name. The call
to unroll gcdr (const 0) 93 takes gcdr and “unrolls” it by performing self-application
93 times, using const 0 as the base case.
Because Wysteria does not allow function calls within a sec scope, we are forced

to enter and exit sec mode (lines 6,10) before and after each recursive call to gcdr.
By comparison, Symphony’s support for first-class shares allows naturally recursive
algorithms like GCD to be expressed much more idiomatically under MPC.

8.2 Performance

Symphony’s expressiveness does not place an undue burden on the implementation’s
ability to achieve good performance. We compared Symphony’s performance with
that of Obliv-C, a highly optimized MPC framework. Details of our experiments can
be found in Appendices A.4 and A.5; here we summarize the results.

We ran on the first five programs in Table 2, which are well known and frequently
referenced in the literature. We configured both Symphony and Obliv-C to use
EMP’s [36] 2-party garbled circuits implementation, to isolate language overhead
from cryptography costs. On a simulated LAN under MPC, Symphony’s running time
was 1.15× that of Obliv-C. Without MPC, Symphony time is 2.4× that of Obliv-C.
On a WAN (limited to 100 gbps and 50ms RTTs), Symphony time was 0.85× that of
Obliv-C. Examining these overheads, we find that one source is Symphony’s support

14:25

Symphony: Expressive Secure Multiparty Computation with Coordination

for N > 2 parties: party inclusion checks require the use of sets (implemented as
balanced binary trees) rather than simple equality tests. The more significant overhead
is unrelated to Symphony itself: the language is implemented as an interpreter in
Haskell, whereas Obliv-C is embedded within compiled C. Indeed, the sizes of garbled
circuits generated by both frameworks are very similar. Thus, we would expect a
narrower gap with a more production-quality implementation.

Symphony’s expressiveness also permits programmers to author algorithm-level
optimization, directly and simply. For example, the median and shuffle-qs programs
leverage Reactive MPC to perform certain comparison operations in the clear, dramati-
cally improving performance over a monolithic protocol [22, 29]. While Reactive MPC
is available in some languages, the combination of features needed to express the lwz
secure shuffle is unique to Symphony—no other language can express it. Compared
to waksman, another secure shuffle algorithm, lwz offers a substantial performance
benefit because it requires no computation under cryptography, just re-sharing and
comparisons/shuffling in the clear. The result is dramatically faster running times for
all input sizes.

9 Conclusion

We have presented Symphony, a new language for MPC with strong support for
coordination. Symphony’s scoped par blocks, first-class party sets, and first-class
shares—which support reactive computation, delegation, and resharing—provide un-
paralleled expressiveness which along with Symphony’s generalized SIMD semantics
make coordination programming less error prone. We formalized core Symphony and
proved that the intuitive, single-threaded interpretation of a program coincides with
its actual distributed semantics. Our prototype implementation exhibits performance
competitive with existing systems, while uniquely enabling optimizations.

A Implementation, Experiments, and Case Studies

A.1 Implementation

This section provides additional information about the Symphony Haskell interpreter
(extending Section 7). We highlight three interesting features: MPC over algebraic
types, synchronized randomness, and the standard library.

MPC over Algebraic Types Symphony generalizes λ-Symphony’s share, mux, case,
and reveal by allowing arbitrary algebraic types as arguments. It also adds another
expression, mux-case, for case analysis on encrypted (shared) values. The share,
mux-case, and reveal expressions on pairs are generally unsurprising. Sharing a
product (pair) is implemented by recursively sharing, component-wise.

share[φ,τ1 ×τ2 : P →Q] (a, b) = (share[φ,τ1 : P →Q] a, share[φ,τ2 : P →Q] b)

14:26

Ian Sweet, David Darais, David Heath, William Harris, Ryan Estes, and Michael Hicks

The mux-case operation on encrypted sums is identical to case, and the reveal

operation is works similarly to share.
We represent sums (variants) as tagged pairs. The λ-Symphony value ι0 v is

represented as sum〈true, v,default〉 and the value ι1 v is represented as
sum〈false,default, v〉. The value default is a placeholder which will be replaced
by a default value of the appropriate type if the sum value is shared. Sharing a sum
value is implemented, as with pairs, by recursively sharing, component-wise.

share[φ,τ1 +τ2 : P →Q] sum〈b, v1, v2〉
≡ sum〈share[φ,B : P →Q] b,share[φ,τ1 : P →Q] v1,share[φ,τ2 : P →Q] v2〉

To share a default value, share[φ,τ : P →Q] default, we simply share instead
the default value of the appropriate type τ. It is important for mux-case that the type
τ be a monoid and that the default value is the identity. For example, when τ is bool
the identity is false and the (monoidal) operation is xor. Likewise, when τ is nat
the identity is 0 and the operation is +. The reveal operation on sum values works
similarly.
The mux-case sum〈b, v0, v1〉 {θ1 → e1; . . . ;θn → en} expression is the most inter-

esting one we have to consider. The tag, b, is encrypted and so we cannot inspect
it to determine if it matches a left or right injection pattern. So, what do we do?
The mux-case proceeds by first filtering out any patterns θ1, . . . ,θn which are not
either a left injection or a right injection pattern. Then, it maps over the remain-
ing patterns θk ≡ ιi x ⁵ by producing mux b then default else v′0 when i is 0 and
mux b then v′1 else default when i is 1 where v′i is the result of evaluating ek under
the environment (γ) extended with [x 7→ vi]. At this point, we add together the list
v1, . . . , vm (where m ≤ n corresponds to the number of patterns in θ1, . . . ,θn which
were either a left or right injection) of values just produced. The add procedure is the
monoidal operation associated with the type, τ, of the values v1, . . . , vm.

Consider the standard encoding of booleans as a sum of units: bool := unit+unit.
We will take sum〈true,•,•〉 to be the encoding of true and symmetrically for false.
We would hope that the obvious encoding of mux in terms of mux-case would work:
mux b then e1 else e2 := mux-case sum〈b,•,•〉 {ιtrue • → e1; ιfalse • → e2}. Indeed,
it does. In the following calculation, let vi denote the result of evaluating ei. Let τ be
the type of v1 and v2, idτ denote the monoidal identity on τ and addτ denote the
monoidal operation. Then, we have:

mux-case sum〈true,•,•〉 {ι0 • → e1; ι1 • → e2}
≡ addτ (mux true then v1 else idτ)

(mux true then idτ else v2)
≡ addτ v1 idτ
≡ v1

MPC over algebraic types is an interesting problem, and there’s a lot of unsolved
problems in this space. We recommend that interested readers consult Oblivious
Algebraic Data Types by Ye and Delaware [38] for a more complete treatment.

5We are ignoring nested patterns for simplicity. The procedure described here is straightfor-
ward to extend.

14:27

Symphony: Expressive Secure Multiparty Computation with Coordination

Synchronized Randomness Symphony provides a convenient way to generate ran-
domness across multiple parties in parallel, ensuring that all parties receive the same
random value. This functionality can be implemented as a library using only access
to local randomness, as shown in the Symphony code below.

1 def randomSend P n =

2 let rec sum' = fun Q ->

3 case Q

4 { {} -> 0

5 ; { p } \/ Q' ->

6 send [nat : p -> P]

7 (par { p } rand { p } nat) + (sum' Q')
8 }

9 in

10 let sum = sum' P in

11 sum % n

This code will generate a random value on each party in P and sum them all together,
modulo n, to generate a random natural number in the range 0..n−1. This works, but
it is inefficient because it requires communication between all the parties each time
they wish to generate a synchronized random number.⁶

The primitive expression provided by Symphony, rand P µ (where µ is a base type
like nat), provides the same functionality but does so more efficiently. It establishes a
shared seed among the parties P using the procedure above the first time they request
a synchronized random number. Thereafter, the parties use a local, cryptographically
secure pseudo-random generator which requires no communication.

The Standard Library The standard library shipped with Symphony has many of
the usual fixings of functional programming languages such as libraries for options;
eliminators (folds) over various algebraic types (nats, options, lists, maps, etc.);
higher order functions (flip, compose, curry, uncurry, etc.). However, it also has some
unusual fixings, such as libraries for coordination, bounded recursion, and utilities
for synchronized randomness. Next, we highlight some interesting, representative
functions.

Listing 3 Selected functions from the standard library of Symphony.
1 def bundleUpWith f P = case P

2 { {} -> <<>>

3 ; { p } \/ P' -> << p | par { p } f p >> ++ bundleUpWith f P'
4 }

5

6 def unroll f init n =

7 if n == 0n then init

8 else f (unroll f init (n - 1n))

9

6 Readers may recognize that the random number generated by this procedure is slightly
biased. When we use this procedure to establish a seed (described below) it is unbiased
because the seed is a multiple of the word size of the machine (128 bits in practice).

14:28

Ian Sweet, David Darais, David Heath, William Harris, Ryan Estes, and Michael Hicks

10 def randNat P = rand P nat

11 def randMaxNat P max = randMax P nat max

12 def randRangeNat P min max = min + (randMaxNat P (max - min))

13

14 def shuffle P a =

15 let n = size a in

16 let shuffleRec = fun [shuffleRec] i ->

17 if i < n - 1n then

18 let j = randRangeNat P i n in

19 let _ = swap a i j in

20 shuffleRec (i + 1n)

21 else ()

22 in if n >= 2n then shuffleRec 0n else ()

23

24 def permutation P n =

25 let a = upTo n in

26 let _ = shuffle P a in

27 a

The coordination library primarily addresses common operations on principal sets,
bundles, and their interaction. For example, the bundleUpWith function in Listing 3
takes a function f and a set of parties,P, and creates a bundle among the parties P
by calling f locally on each party p in P. This function is useful for eliminating the
boilerplate associated with the common pattern of reading an input from each party.

def readInputs P = bundleUpWith (fun _ -> read nat) P

The bounded recursion library in Symphony provides a critical function, unroll,
which was used and briefly described in Listing 1. The full definition of unroll appears
in Listing 3. As described in Section 8.1, the unroll f init n function is used in
combination with the brec keyword to finitely “unroll” a function, f, n times before
eventually bottoming out with a call to init. To illustrate, consider the gcd and gcdr

functions from Section 8.1.
1 def brec gcdr (a, b) = mux if (a == 0) then b else gcdr ((b % a), a)

2 def gcd = unroll gcdr (const 0) 93

The signature def brec f x1 . . . xn desugars into the signature def f f x1 . . . xn so
that any recursive call in the body of f now instead refers to the formal parameter
f rather than the function being defined. By shadowing the recursive binding, we
transparently turn any recursive function into one that can be used for bounded
recursion. Here’s what that looks like for gcdr:

1 def gcdr gcdr (a, b) = mux if (a == 0) then b else gcdr ((b % a), a)

Finally, we can compute the finite unrollings for 0 and 2 to see how unroll works
in conjunction with functions desugared using brec.

1 def gcd = unroll gcdr (const 0) 0

2 = if 0 == 0 then (const 0) else gcdr (unroll gcdr (const 0) (0-1)

,→)

3 = const 0

14:29

Symphony: Expressive Secure Multiparty Computation with Coordination

1 def gcd = unroll gcdr (const 0) 2

2 = if 2 == 0 then (const 0) else gcdr (unroll gcdr (const 0) (2-1)

,→)

3 = gcdr (unroll gcdr (const 0) 1)

4 = gcdr (if 1 == 0 then (const 0) else gcdr (unroll gcdr (const 0)

,→ (1-1)))

5 = gcdr (gcdr (unroll gcdr (const 0) 0))

6 = gcdr (gcdr (const 0))

FFI and Resource Management The Haskell interpreter for Symphony implements
MPC using the Symphony runtime library. The Symphony runtime library imple-
ments MPC using the EMP and MOTION libraries. Each of these layers (Symphony
interpreter, Symphony runtime, and EMP/MOTION) interact via FFI, using opaque
foreign pointers to represent values in the next layer.
In Haskell, the raw foreign pointers are wrapped with the ForeignPtr type, which

executes an associated finalizer (i.e. a Haskell function) on the raw foreign pointer
when it is garbage collected. We use this finalizer to call (via FFI) an appropriate
destructor function which is provided by Symphony runtime.
In Rust, the raw foreign pointers are wrapped with newtype-style Rust structures.

These Rust structures contain an explicit implementation of the Drop trait, calling the
drop function on the structure when it is dropped. This is analogous to the ForeignPtr
in Haskell, except that Rust can insert calls to drop statically rather than relying on
garbage collection. Just as in Haskell, the drop function calls (via FFI) an appropriate
destructor function, which is provided by EMP and MOTION.
Finally, we implement FFI interfaces for both EMP and MOTION which expose

constructor and destructor functions which perform heap allocation and deallocation
of the requisite C++ objects.
Putting all this together, when an encrypted value is garbage collected by Haskell

the ForeignPtr will call the appropriate destructor defined by Symphony runtime.
Then, that destructor function will drop the value which will call the appropriate
destructor defined by EMP or MOTION. Finally, the destructor of EMP or MOTION
exposed by the FFI will free the C++ object using the delete keyword.

These approaches to integrating software written in different languages are largely
standard. We chose to implement the enhancements in Symphony runtime as a
separate library to optimize performance. We chose Rust specifically because it has
excellent libraries, tooling, and documentation. The Symphony runtime is written
in idiomatic Rust, meaning that it may serve as an artifact of independent interest for
researchers who need access to MPC protoocols with support for delegation, resharing,
and reactive MPC.

A.2 Benchmark Programs

Here we describe some of the programs we have implemented in Symphony, tabu-
lated in Table 2, in more detail. The language features required to implement each
program are briefly discussed in Section 8.1.

14:30

 https://hackage.haskell.org/package/base-4.16.1.0/docs/Foreign-ForeignPtr.html
https://doc.rust-lang.org/std/ops/trait.Drop.html

Ian Sweet, David Darais, David Heath, William Harris, Ryan Estes, and Michael Hicks

The implementation of all the programs listed here, as well as the templates used
for benchmarking, can be found in Symphony’s repository: https://github.com/plum-
umd/symphony-lang.
hamming, edit, bio-match, db-analytics, and gcd, are 2-party programs, fully

described in Table 2. We implemented these programs in Symphony and Obliv-C,
which is limited to 2-party MPC. We believe they could be implemented in Wysteria.

richest, gps, auction, median, and intersect are also fully described in Table 2.
They were previously implemented in Wysteria and we back-ported them to Sym-
phony. richest, gps, and auction support N parties but otherwise require no special
coordination. median and intersect support 2 parties and use Reactive MPC (referred
to as “mixed-mode” by Wysteria) to improve their efficiency; we believe these could
be implemented in Obliv-C.

mmm orchestrates a single-elimination tournament over N parties. Each match in
the tournament is a 2-player secure computation, with the winner moving on to the
next round. The program requires First-Class Party Sets because the participants in
each match are dynamically assigned from the set of remaining players. Likewise,
the set of remaining players is determined dynamically according to outcome of the
matches in the previous round. It requires Synchronized Randomness to determine the
participants in each match. Finally, it requires Reactive MPC to decrypt the winners in
each round so that they may be coordinated in the following round.

committee performs an arbitrary secure computation among N parties by selecting
a random committee of size K < N and delegating the secure computation to them.
The program requires First-Class Party Sets and Synchronized Randomness because
the committee is computed dynamically according to K and synchronized random
numbers generated by the N parties. It requires Delegation because the parties outside
the committee encrypt their input and send it to the committee but do not participate
in the secure computation.

waksman is a protocol for securely shuffling an array of elements among N parties
without revealing the permutation to any of them. The Waksman protocol imple-
ments a secure shuffle via repeated application of a classic Waksman permutation
network [34]. A permutation network repeatedly and conditionally swaps two list
elements at a time until the list is fully shuffled; each swap can be implemented
from Boolean gates. One subtlety of a permutation network is that one must choose
the control bits of the network, which is an input that dictates which of the swap
gates should indeed swap their input. To fully hide the shuffle from all parties, each
party secretly chooses their own control bits and programs one of the sequence of
|P| networks. Thus, the full shuffle requires |P| networks, and the implementation
requires some coordination: the programmer must prescribe that each party will,
one-by-one, program a network. This protocol requires Synchronized Randomness to
perform (non-secure) shuffles as a subroutine.

14:31

https://github.com/plum-umd/symphony-lang
https://github.com/plum-umd/symphony-lang

Symphony: Expressive Secure Multiparty Computation with Coordination

lwz is also a secure shuffle protocol, originally due to Laur,Willemson, and Zhang [23].
They showed how to implement a highly efficient secure shuffle among parties Q
which is resilient to T corruptions, using a linear secret sharing scheme. The LWZ
protocol implements a secure shuffle by repeatedly shuffling the elements among
committees, which are strict subsets of the parties of size |Q| − T . A committee is given
shares of the input list and agrees on a random permutation, π; locally permutes its
shares according to π; and then constructs new shares for the next committee. This
process repeats until each set of T parties has been excluded from some committee,
which is sufficient to hide the global shuffle.⁷ In addition to Synchronized Randomness
lwz requires First-Class Party Sets and Resharing to compute all the party sets of size
N − T and reshare the array of elements to and from these subsets. As far as we are
aware, no prior MPC language can directly express lwz.

trivial ORAM Trivial ORAM [35] allows secret shares to be used as addresses by
simulating random access. The simulation performs a linear scan of the underlying
array for every access (read or write). Multiplexors are used to choose which index to
operate on. Trivial ORAM is a basic primitive which is used to construct more efficient
ORAM implementations such as Circuit ORAM.

Listing 4 A secure, N -party sorting procedure written in Symphony. Uses the Shuffle-
Then-Sort paradigm [17] with LWZ as the underlying shuffle. Each party in
{A, B, C , D, E} contributes an array of integers, which are concatenated together
and then securely shuffled and sorted by the parties in Q.

1 party A B C D E

2

3 -- read input at p, secret-share to all in Q

4 def readShare Q p = par ({ p } \/ Q)

5 let i = par { p } read (array int) from "lwz.txt" in -- file local to

,→ each p

6 share [gmw, array int : { p } -> Q] i

7

8 def delegateShares P Q =

9 map (readShare Q) (psetToList P)

10

11 def shuffleWith Q S sharesQ = par (Q \/ S)

12 let sharesS = share [gmw, array int : Q -> S] sharesQ in

13 share [gmw, array int : S -> Q] (shuffle S sharesS)

14

15 def lwz Q sharesQ =

16 let t = 1 in

17 foldr (shuffleWith Q) sharesQ (subsets Q ((psetSize Q) - t))

18

19 def revealLte Q x y = reveal [gmw, bool : Q -> Q] x <= y

20

21 def secureSort Q sharesList =

22 let sharesQ = par Q (arrayConcat sharesList) in

7 It is also necessary for security that |Q| − T > T (equivalently, |Q| ≥ 2T +1) or else a corrupt
committee of size |Q| − T can collude to reveal the secret elements being shuffled.

14:32

Ian Sweet, David Darais, David Heath, William Harris, Ryan Estes, and Michael Hicks

23 let shuffled = lwz Q sharesQ in

24 let sorted = quickSort (revealLte Q) shuffled

25

26 def main () = par {A,B,C,D,E}

27 let Q = {A,B,C} in

28 let sharesList = delegateShares {A,B,C,D,E} Q in

29 let sorted = secureSort Q sharesList in

30 ...

shuffle-qs is the most sophisticated program, using both committee and lwz as
subroutines. It implements a secure sorting procedure over N parties by choosing a
committee of size K > 2, shuffling the elements among the committee using lwz, and
then sorting the elements with QuickSort by revealing the result of each comparison.
The shuffle-qs program as written in Symphony is shown in Listing 4. As is

standard, all parties run the same program, starting at main. While the shuffling and
sorting code works for arbitrary numbers of parties, main is specialized to those parties
declared at the top, named A–E. When par {A,B,C,D,E} ... is reached on line 26, only
the listed parties execute the subsequent code On line 27, Q is bound to the set
{A,B,C} and is then passed as the second argument to delegateShares on line 28, and
as the first to secureSort on line 29.

In readShare Q p, party p reads an array of integers from local file lwz.txt (line 5),
and then creates a share among parties in Q (in Symphony a share of an array is
an array of shares). The share operation requires all parties in {p}∪ Q to be present
(ensured by the par on line 4) so that p can transmit to each party in Q its share and
know they are ready to receive it—note that p may or may not be a member of Q.
The delegateShares function calls readShare Q for each party p ∈ P, with the goal of
delegating the subsequent computation to those parties in Q.

On lines 12–13 the shares among parties Q are reshared to be among parties S, and
then reshared back to Q once shuffled by S. The foldr on line 17 invokes shuffleWith
on each subset S of Q (computed by subsets), which has size |Q| − T . In turn, this
function reshares sharesQ among those parties in S, which invoke shuffle to permute
its values, and then reshare the result back. Within shuffle, the parties S agree on a
seed for a PRNG that they use as the basis for the shuffle, ensuring they compute the
same permutation. Laur, Willemson, and Zhang proved that if each subset S has size
|P| − T , then nothing can be learned about the order of the shuffled elements unless
n> T parties collude. In Listing 4, we specify T = 1 on line 16.
Once line 23 completes, shuffled contains a shuffled, secret-shared array. Line 24

then quicksorts this array, using revealLte Q as the comparison function. This func-
tion uses Symphony’s reveal construct to convert the shares among P to plaintext
values replicated among Q.

This program requires First-Class Party Sets, Delegation, Synchronized Randomness,
and Resharing by virtue of relying on committee and lwz. It requires Reactive MPC
because each comparison in QuickSort is decrypted before securely computing the
next comparison.

14:33

Symphony: Expressive Secure Multiparty Computation with Coordination

A.3 Committee Election in Wysteria

Wysteria does not support first-class party sets due to a lack of support for computing
on them. We can see this in an attempt to port the elect function in Listing 5 from
Symphony to Wysteria, which ultimately proves impossible. This limitation impacts
Wysteria’s ability to express coordination protocols compositionally.

Listing 5 A simple Symphony function to elect a subset of <= k parties from among P.
A more sophisticated version of this function is used in the committee program
(see Table 2).

1 def elect P k =

2 if k == 0 then { }

3 else case P

4 { { } -> { }

5 ; { p } \/ P' -> { p } \/ (elect P' (k - 1))

6 }

The elect P k function “elects” a subset of at most k parties from the set P. A more
featureful implementation might use a voting procedure or synchronized randomness
to determine the subset, but this simple version will suffice for our purposes. Let’s
consider how we might express this function in Wysteria.

Attempt 1 The most natural way to express elect is through a signature that matches
that of Symphony.

let elect (P : ps{true}) (k : nat) : ps{subeq P} = ??

Here we see a fairly typical OCaml-like signature with some type annotations. The
type system of Wysteria is a refinement type system, but restricted so that refinements
can only be placed on the party set type, ps. The set of refinements contains the
standard propositional refinements true and conjunction (and), as well as special
refinements singl, subeq x, and eq x. The singl refinement is satisfied by sets, P,
that are singletons: |P|= 1. The subeq Q (eq Q) refinement is satisfied by party sets,
P, that are a subset of (equal to) Q: P ⊆Q.
In this signature for elect, we see that P has type ps{true} indicating that it is an

unrefined party set. In addition, we see that elect should return a party set which is
a subset of P. The fact that P is considered bound in the return type is a hallmark of
dependent and refinement type systems.

Unfortunately, this attempt is dead on arrival. We cannot implement this signature
because Wysteria simply has no expression form that corresponds to elimination
(i.e. computation on) party sets. In our next attempt, we will try to circumvent this
restriction by encoding party sets as arrays and computing over arrays instead.

Attempt 2 In this attempt, we will encode a party set P as an array containing
singleton sets over elements belonging to P according to the type
array ps{singl and subeq P}. This approach shows much more promise:

1 let elect (P : ps{true})

2 (Pe : array ps{singl and subeq P})

14:34

Ian Sweet, David Darais, David Heath, William Harris, Ryan Estes, and Michael Hicks

3 (k : nat)

4 : array ps{singl and subeq P} =

5 let ret = array [k] of (select Pe[0]) in

6 let rec elect_loop i =

7 if i < k then

8 let _ = update ret[i] <- select Pe[i] in

9 elect_loop (i + 1)

10 else ()

11 in

12 let _ = elect_loop 0 in

13 ret

This function loops through the first k elements of Pe and assigns them to a new
array, ret, before returning ret. Contrary to our last attempt, the parameter P only
exists in this signature to refine the type of Pe and the return type. All the computation
is being performed over our encoding of party sets.

This version of elect is well-typed, and so we can try using it in a simple example.
1 let foo (Q : ps{true}) (Qe : array ps{singl and subeq Q}) : ... = ...

2

3 let P = { !A, !B, !C } in

4 let Pe = array [3] of { !A } in

5 let _ = update Pe[1] <- { !B } in

6 let _ = update Pe[2] <- { !C } in

7 let Ce = elect P Pe 2 in

8 let ret =par(??)=

9 foo ?? Ce

10 in ret

This little driver program declares P to contain the parties A, B, and C which are
encoded in Pe. It uses the elect function above to produce an encoded committee,
Ce, of 2 parties. At this point we would like just the committee members to run foo,
but to do so we must fill the holes (??) with the actual party set represented by the
encoding Ce. To do so, we define a decode function.

1 let decode (P : ps{true})

2 (Pe : array ps{singl and subeq P})

3 : ps{subeq P} =

4 let n = length Pe in

5 let rec decode_loop i acc =

6 if i < n then

7 let p = select Pe[i] in

8 decode_loop (i + 1) (acc \/ p)

9 else acc

10 in decode_loop 0 { }

The decode function iterates over Pe and takes the union of all its elements. Since
each of these elements is labeled as being a subset of P, Wysteria is able to deduce
that the union of all the elements is also a subset of P as indicated by the return type

14:35

Symphony: Expressive Secure Multiparty Computation with Coordination

ps{subeq P}.⁸ Let’s try using our decode function to fill in those holes from our earlier
example.

1 let foo (Q : ps{true}) (Qe : array ps{singl and subeq Q}) : ... = ...

2

3 let P = { !A, !B, !C } in

4 let Pe = array [3] of { !A } in

5 let _ = update Pe[1] <- { !B } in

6 let _ = update Pe[2] <- { !C } in

7 let Ce = elect P Pe 2 in

8 let C = decode P Ce in

9 let ret =par(C)=

10 foo C Ce

11 in ret

We can now enter an execution context containing only the parties C using par(C)

mode. Unfortunately, the type system rejects this program at the call to foo. Why?
Because Wysteria is unable to deduce that Ce has type array ps{singl and subeq C}

as required by foo’s signature. Instead, the type of Ce is array ps{singl and subeq P}.
We could imagine using a different signature for foo, but it is important for compo-
sitionality that foo take an encoded party set. Doing so enables foo to leverage any
other functions that dynamically compute party sets according to our encoding. For
example, foo might wish to call elect on its argument.
Of course, the critical issue is that the return type of elect is not precise enough,

thereby preventing the encoded party set returned by elect from being passed to
other functions that need to compute over party sets. At this point we are stuck.
Wysteria does not offer any other facilities to circumvent the lack of an elimination
form on party sets.

A.4 Performance vs Obliv-C

We compared Symphony’s performance, in terms of running time and gate counts,
against that of Obliv-C on the same programs. The results are summarized in Sec-
tion 8.2; this section provides details of the experiments and results.

Experimental Setup For fair comparison, both Symphony and Obliv-C were con-
figured to use EMP [36] as their MPC backend; we extended Obliv-C to use EMP
via its callback interface. We used both Symphony and Obliv-C to implement a
benchmark suite of five programs: hamming, edit-dist, bio-match, db-analytics,
and gcd. See Table 2 for a description of these programs.
Experiments were run on a 2019 MacBook Pro with a 2.8GHz Quad-Core Intel

Core i7 and 16GB of RAM (OSX 11.3.1). The Obliv-C compiler is an extension of GCC
5.5.0, and all benchmarks were compiled with -O3 optimizations. Experiments were
run on two simulated networks: a LAN (1 gbps bandwidth, <1ms RTT latency) and a

8Wysteria does not support the length primitive on arrays that we used to compute n. This
could be easily added, and allows us to avoid cluttering up our signatures with array
lengths.

14:36

Ian Sweet, David Darais, David Heath, William Harris, Ryan Estes, and Michael Hicks

Figure 7 End-to-end execution time of 5 programs, averaged over five samples (lower is
better). LAN is a simulated 1 gbps connection with no delay. WAN is a simulated
100mbps connection with a 50ms RTT latency. Yao and Plain protocols use EMP’s
sh2pc (semi-honest, two-party) and plain protocols respectively. Symphony
uses EMP’s Integer interface. Obliv-C uses EMP’s Bit interface (compiles integer
operations to circuits). Input sizes for all the benchmarks indicate the length of
the list(s) provided as input, except for gcd-gc where the input size indicates
the number of iterations of the GCD algorithm.

WAN (100Mbps bandwidth, 50ms RTT latency). All experiments use 32-bit integers,
except for gcd-gc which uses 64-bit integers. Reported execution times measure the
end-to-end execution time of party A and were averaged over five samples.

Running time Figure 7 plots the end-to-end execution time of Symphony and of
Obliv-C on the benchmarks. On LAN under MPC (Yao), Symphony’s running time is
1.15× that of Obliv-C (per the geometric mean). Without MPC, Symphony time is
2.4× that of Obliv-C. On WAN under MPC, Symphony time is 0.85× that of Obliv-C.
The maximum slowdown occurs in edit-dist, which uses dynamic programming
and for Obliv-C is heavily optimized by GCC.
There are a two primary sources for Symphony’s overhead: First, Symphony

supports arbitrary numbers of parties while Obliv-C supports only two. This is signifi-
cant because Symphony performs frequent runtime checks on the parties in scope.
Since Symphony supports an arbitrary number of possible parties, we represent the
parties in scope as a set (implemented by a balanced tree data structure). Thus checks
on principals are implemented by set operations. We could improve the efficiency
of these runtime checks by implementing them using a bitset instead of a balanced
tree. Obliv-C also performs certain checks on parties but, since only two parties are
supported, these are implemented as simple integer equality checks.

Second, Symphony is interpreted but Obliv-C is compiled. Interpretation imposes
overhead, especially for programs involving loops. For example, a simple stress test
which sums 1 million integers (in the clear) on a single party shows that Symphony

14:37

Symphony: Expressive Secure Multiparty Computation with Coordination

takes about 6 seconds where Obliv-C takes about 100 milliseconds. This stress test
executes no runtime checks imposed by λ-Symphony, which suggests that the
overhead is due to interpretation.

Since both Symphony and Obliv-C are synchronous (i.e. they block when reading
from the network), each non-local MPC operation imposes a RTT delay on the real
execution time. If the implementations were asynchronous instead, the MPC opera-
tions and interpretation would execute in parallel. Instead of an additive delay, real
execution time between non-local MPC operations would be the maximum of the
interpretation time and RTT. For all but the fastest LAN networks, the RTT is > 5 ms.
We conjecture that the interpretive overhead of Symphony is small enough that it
is dominated entirely by the network latency for most deployments. If that is the
case, real execution time between asynchronous Symphony and Obliv-C would be
indistinguishable.
Comparing the LAN and WAN benchmarks confirms that the language overhead

imposed by Symphony is dominated by the time it takes to perform network com-
munication during a WAN deployment of MPC. We believe Symphony is faster than
Obliv-C in the WAN setting due to its use of the EMP Integer interface, which uses the
network more efficiently than the Bit interface used by Obliv-C’s callback mechanism,
and consequently the EMP backend for Obliv-C.

Generated circuit sizes As a second experiment, we instrumented the EMP backend
to count the number of utilized AND and XOR gates. Counting gates is primarily a
sanity check that ensures Symphony is not erroneously introducing large numbers
of unneeded gates. Table 3 tabulates the number of AND and XOR gates generated
by Symphony and by Obliv-C. The gate counts generated by Symphony and Obliv-
C are very similar, with differences caused by using the EMP Integer interface vs
Obliv-C compiling to the Bit interface (as required by its callback mechanism. The
optimizations performed by EMP’s circuit compiler and Obliv-C’s circuit compiler are
similar, but not identical.
Overall, our experiments indicate that the language design itself does not impose

significant overhead on either end-to-end execution time or generated circuit sizes. We
leave a more sophisticated implementation which leverages compilation and compiler
optimizations to future work.

A.5 Security vs. Performance for Secure-Shuffle

The Waksman and LWZ protocols present different tradeoffs in terms of security and
performance.
Given an input list of n integers of bitwidth w, a Waksman permutation network

is a recursive algorithm requiring O(w · n log n) Boolean gates. Since we must repeat
the network |P| times, we require O(|P| ·w · n log n) gates total. The network’s circuit
depth grows with O(log n), which is relevant since the round complexity of interactive
MPC protocols, such as GMW, grows with depth; in total we need O(|P| · log n) rounds
of communication.

14:38

Ian Sweet, David Darais, David Heath, William Harris, Ryan Estes, and Michael Hicks

Table 3 Gate counts (AND and XOR) of select benchmark programs. Input Size for
Hamming Dist., Bio. Matching, DB Analytics, and Edit Dist. is the length of the
input lists. For GCD, it is the maximum number of GCD iterations. Gate counts were
collected by modifying EMP to record AND or XOR gate execution. Symphony
uses EMP’s Integer interface where applicable, OblivC uses EMP’s Bit interface
(compiling integer operations to circuits).

OblivC Symphony ∆ (OblivC - Symphony)

Benchmark Input Size AND Gates XOR Gates AND Gates XOR Gates AND Gates XOR Gates
Hamming Dist. 10000 1249875 3159595 950000 2550000 299875 609595

20000 2499875 6319595 1900000 5100000 599875 1219595
30000 3749875 9479595 2850000 7650000 899875 1829595
40000 4999875 12639595 3800000 10200000 1199875 2439595
50000 6249875 15799595 4750000 12750000 1499875 3049595

Bio. Matching 100 2617868 6353496 2675500 8007000 -57632 -1653504
200 5235768 12706996 5351000 16014000 -115232 -3307004
300 7853668 19060496 8026500 24021000 -172832 -4960504
400 10471568 25413996 10702000 32028000 -230432 -6614004
500 13089468 31767496 13377500 40035000 -288032 -8267504

DB Analytics 60 4609304 9569553 4732457 10425422 -123153 -855869
70 6246968 12970159 6413597 14128242 -166629 -1158083
80 8133020 16886701 8349937 18393262 -216917 -1506561
90 10268008 21320663 10541477 23220482 -273469 -1899819
100 12651370 26270229 12988217 28609902 -336847 -2339673

GCD 500 2360091 6735821 2302192 6910016 57899 -174195
600 2832991 8085621 2762592 8291916 70399 -206295
700 3305891 9435421 3222992 9673816 82899 -238395
800 3778791 10785221 3683392 11055716 95399 -270495
900 4251691 12135021 4143792 12437616 107899 -302595

Edit Dist. 50 780882 1704539 637372 1779607 143510 -75068
80 2003142 4378936 1631872 4556407 371270 -177471
110 3790602 8291824 3085372 8614807 705230 -322983
140 6143262 13443100 4997872 13954807 1145390 -511707
170 9061122 19832759 7369372 20576407 1691750 -743648

The LWZ protocol, on the other hand, avoids the need for general purpose MPC
circuit evaluation. Indeed, the protocol is strikingly lightweight: The LWZ protocol
does not require execution of any secure gates at all. The downside of LWZ is that
its performance degrades with the number of tolerated corruptions, t. I.e., suppose
that at most t parties will collude and share information with one another. To prevent
these adversaries from learning the final permutation of the elements, we must ensure
that for each subset of t parties, there exists one repetition of the protocol where none
of those parties is on the committee. Thus, we must make our committees each of
size |P| − t, and the number of needed repetitions grows with

� |P|
|P|−t

�

. If t is small, say
t = 1, then the LWZ protocol has excellent performance requiring only |P| rounds of
communication. If t is large, say t = |P|2 −1, then performance degrades exponentially
in |P|.

Symphony Execution Time Figure 8 plots Symphony’s end-to-end execution time for
the LWZ and Waksman shuffles. In both protocols, three parties each share an array
of Input Size integers which are concatenated and shuffled. We ran the programs
using both the GMW protocol using the Replicated protocol as a baseline. In the
Replicated protocol, Boolean gates are implemented locally and computed in the

14:39

Symphony: Expressive Secure Multiparty Computation with Coordination

Figure 8 End-to-end execution time of Waksman vs LWZ shuffle over three parties, av-
eraged over five samples (lower is better). The Replicated protocol executes
the program without cryptography, executing operations in the clear. The GMW
protocol uses the Symphony implementation of GMW which uses MOTION as
a backend. Input Size indicates the length of the integer list provided as input
by each party.

clear instead of via cryptography. For our LWZ threshold, we chose the optimistic
setting where the maximum number of colluding parties is t = 1.
Our results demonstrate that the Symphony implementation of LWZ properly

avoids MPC overhead: as already stated, LWZ is a lightweight protocol, so Symphony
should not – and does not – erroneously introduce cost just because we are operating on
GMW shares. As expected, we find that the GMW-based Waksman implementation is
much slower than both ReplicatedWaksman and both variants of LWZ. The slowdown
is primarily due to the cryptography required to execute the Boolean gates under
MPC.
We do note that GMW-based Waksman achieves lower performance than might

be expected. We observed that the low performance is due to the MOTION backend
which, on this benchmark, allocates > 4GB of memory per party to store the GMW
circuit. Moreover, the execution of each gate involves accessing many non-contiguous
memory addresses, leading to low spacial locality. We believe that performance can
be greatly increased by handling more of the circuit generation and execution in the
compatibility layer of Symphony.

Even with a highly optimized GMW backend, the LWZ protocol would remain best
for the setting of t = 1: the coordination-heavy LWZ protocol is simply a superior
technique for the setting. Symphony’s features make the complex coordination
involved in this protocol easy to express.

14:40

Ian Sweet, David Darais, David Heath, William Harris, Ryan Estes, and Michael Hicks

κ ∈ stack ::=⊤ | 〈let x =□ in e | m,γ〉 :: κ ς ∈ config ::= m,γ,δ,κ, e

γ ⊢m δ, a ,→ δ, v

ST-Var

γ ⊢m δ, x ,→ δ,γ(x)$m

ST-Lit

γ ⊢m δ, i ,→ δ, i@m
γ ⊢m δ, p ,→ δ, p@m

ST-Int-Binop
iψ1 @m= γ(x1)$m

iψ2 @m= γ(x2)$m ⊢m ψ

γ ⊢m δ, x1 ⊙ x2 ,→ δ,J⊙K(i1, i2)
ψ@m

ST-PSet-Binop
p1@m= γ(x1)$m

p2@m= γ(x2)$m

γ ⊢m δ, x1 ∪ x2 ,→ δ, (p1 ∪ p2)@m

ST-Mux
iψ1 @m= γ(x1)$m

iψ2 @m= γ(x2)$m

iψ3 @m= γ(x3)$m ⊢m ψ

γ ⊢m δ, x1 ? x2 ⋄ x3 ,→ δ, cond(i1, i2, i3)
ψ@m

ST-Pair
v1 = γ(x1)$m

v2 = γ(x2)$m

γ ⊢m δ, 〈x1, x2〉 ,→ δ, 〈v1, v2〉@m

ST-Proj
〈v1, v2〉@m= γ(x)$m

γ ⊢m δ,πi x ,→ δ, vi

ST-Inj
v = γ(x)$m

γ ⊢m δ, ιi x ,→ δ, (ιi v)@m

ST-Fun

γ ⊢m δ,λz x . e ,→ δ, 〈λz x . e,γ〉@m

ST-Ref
v = γ(x)$m

γ ⊢m δ,ref x ,→ {ℓ 7→ v} ⊎δ,ℓ#m@m

ST-Deref
ℓ#q@m= γ(x)$m

γ ⊢m δ, !x ,→ δ,δ(ℓ)$m

ST-Assign
ℓ#m@m= γ(x1)$m

v = γ(x2)$m

γ ⊢m δ, x1 := x2 ,→ δ[ℓ 7→ v], v

ST-Read
|m|= 1

γ ⊢m δ,read ,→ δ, i@m

ST-Write
i@m= γ(x)$m |m|= 1

γ ⊢m δ,write x ,→ δ, 0@m

ST-Share
p@m= γ(x1)$m

q@m= γ(x2)$m

iψ@p = γ(x3)$p

⊢p ψ

q ̸= ∅
m = p ∪ q

γ ⊢m δ,share[x1→ x2] x3 ,→ δ, ienc#q@q

ST-Reveal
p@m= γ(x1)$m

q@m= γ(x2)$m

ienc#p@p = γ(x3)$p

q ̸=∅
m= p ∪ q

γ ⊢m δ,reveal[x1→ x2] x3 ,→ δ, i@q

ς −→ ςST-Case-Inj
(ιi v)@m= γ(x1)$m

m,γ,δ,κ,case x1 {x2.e1}{x2.e2} −→ m, {x2 7→ v} ⊎ γ,δ,κ, ei

ST-Case-PSet-Emp
∅@m= γ(x1)$m

m,γ,δ,κ,case x1 {.e1}{x2 x3.e2} −→ m,γ,δ,κ, e1

ST-Case-PSet-Cons
({A} ⊎ p)@m= γ(x1)$m

m,γ,δ,κ,case x1 {.e1}{x2 x3.e2} −→ m, {x2 7→ {A}, x3 7→ p} ⊎ γ,δ,κ, e2

ST-Par
p@m= γ(x)$m m∩ p ̸=∅

m,γ,δ,κ,par x e −→ m∩ p,γ,δ,κ, e

ST-ParEmpty
p@m= γ(x)$m m∩ p =∅ γ′ = {x ′ 7→Æ} ⊎ γ

m,γ,δ,κ,par x e −→ m,γ′,δ,κ, x ′

ST-App
v1 = γ(x1)$m v2 = γ(x2)$m 〈λz x . e,γ′〉@m= v1

m,γ,δ,κ, x1 x2 −→ m, {z 7→ v1, x 7→ v2} ⊎ γ′,δ,κ, e

ST-LetPush
κ′ = 〈let x =□ in e2 | m,γ〉 :: κ

m,γ,δ,κ,let x = e1 in e2 −→ m,γ,δ,κ′, e1

ST-LetPop
γ ⊢m δ, a ,→ δ′, v κ= 〈let x =□ in e | m′,γ′〉 :: κ′

m,γ,δ,κ, a −→ m′, {x 7→ v} ⊎ γ′,δ′,κ′, e

Figure 9 λ-Symphony single-threaded semantics. Premises highlighted ■ are required
only for lazy MPC evaluation.

B Metatheory

B.1 Single-Threaded Semantics

Figure 9 shows the complete single-threaded semantics which are discussed in Sec-
tion 4.2.

Notice that rules for handling I/O require that the mode is a singleton party; this is
important for ensuring compatibility (i.e., so that all parties agree on the contents of
shared variables).

14:41

Symphony: Expressive Secure Multiparty Computation with Coordination

Sums and pairs are essentially standard, modulo the consideration of their values’
locations, and party sets are constructed via set-union, and deconstructed via pattern
matching.

Symphony directly supports lists and arrays; in λ-Symphony they can be encoded
by iterated sum and pair values where nil≜ ι1 0 and cons≜ λx . λxs. ι2 〈x ,xs〉; lists
can be deconstructed by pattern matching with case. We can encode bundles as an
association list, implementing a map from parties to values located at that party. For
example, the following list represents a bundle with 8 located at A and 3 located at B.

ι2 〈〈{A}, 8@{A}〉, ι2 〈〈{B}, 3@{B}〉, (ι1 0)〉〉
(Missing location annotations for the list itself are dropped to avoid clutter; they are
all @{A, B}.)

B.2 Proof Sketches for Correspondence Theorems

To prove theorems Theorem 6.1, Theorem 6.2 and Theorem 6.3 given in Section 6,
we first formalize key definitions.

Definition B.1 (Terminal State).
ς is a terminal state

Í
⇐⇒ ς= m,γ,δ,⊤, a ∧ γ ⊢m δ, a ,→ δ′, v

ς̇ is a terminal state
Í
⇐⇒ ς̇= m, γ̇, δ̇,⊤, a ∧ γ̇ ⊢m δ̇, a ,→ δ̇′, v̇

C is a terminal state
Í
⇐⇒ ∀A∈ dom(C). C(A) is a terminal state

This definition captures the idea that a state is terminal if the execution stack is
empty (⊤), the next term to execute is atomic (a), and the atomic expression is able
to step (via ,→) to a value v. There are no successor configurations which can be
reached from a terminal state. Any state which is both non-terminal and also has no
successor configurations we call stuck.

Definition B.2 (Divergence). A single-threaded configuration ς is divergent if for all ς′

where ς −→∗ ς′, there exists ς′′ s.t. ς′ −→ ς′′. (And likewise for distributed configurations
C and transitions⇝∗.)

Definition B.3 (Locally stuck).
C is locally stuck

Í
⇐⇒ ∃A s.t. C(A) = ς̇

and where ς̇ is not a terminal state
ς̇.e /∈ {share[→] ,reveal[→] }
ς̇ −̸→A

or ς̇.e ∈ {share[x1→ x2] x3,reveal[x1→ x2] x3}
p = ς̇.γ̇(x1) m= ς̇.m
q = ς̇.γ̇(x2) m ̸= p ∪ q

Now we establish a number of key lemmas. Our proof approach for Theorem 6.1
largely follows the proof approach from Wysteria [28], and our proof approach for
Theorem 6.2 and Theorem 6.3—while novel—are straightforward proofs by case
analysis and inductive reasoning on the recursive syntax of configurations and induc-
tively defined relations −→,⇝ and −→A. In this section we show the high level proof
approach.

14:42

Ian Sweet, David Darais, David Heath, William Harris, Ryan Estes, and Michael Hicks

First, we establish determinism for the single-threaded semantics and confluence
for the distributed semantics:

Lemma B.1 (ST Determinism). If ς −→ ς1 and ς −→ ς2 then ς1 = ς2.

Proof. Case analysis on derivations ς −→ ς1 and ς −→ ς2.

Lemma B.2 (D Confluence). If C ⇝∗ C1 and C ⇝∗ C2 then C1⇝
∗ C3 and C2⇝

∗ C3 for
some C3.

Proof. We first prove a diamond property sublemma that shows if C ⇝ C1, C ⇝ C2

and C1 ̸= C2, then C1⇝ C3 and C2⇝ C3 for some C3, which is proved by case analysis
on derivations C ⇝ C1 and C ⇝ C2. Confluence is established as a classic results
whereby transition systems which satisfy the diamond property are also confluent,
the proof of which is by induction on derivations C ⇝∗ C1 and C ⇝∗ C2 and appealing
to the diamond property in the base cases.

Next, we establish forward simulation between terminal states and semantics:

Lemma B.3 (ST Forward Simulation).

1. If ς is terminal then ς is terminal
2. If ς is stuck then ς is locally stuck
3. If ς −→∗ ς′ then ς ⇝∗ ς′ .

Proof.

1. Case analysis on ς
2. Case analysis on ς
3. Induction on steps in ς −→∗ ς′ and case analysis on intermediate derivations
ς −→ ς′′.

Theorem 6.1 then follows from these lemmas:

Proof of ST/D Terminal Correspondence. The forward direction is equivalent to show-
ing ς −→∗ ς′ and ς′ terminal implies ς −→∗ ς′ and ς′ terminal, which follows from
Lemma B.3.
The backward direction is equivalent to showing ς ⇝∗ C and C terminal implies

ς −→∗ ς′ for some ς′ where ς′ terminal and C = ς′ . By Lemma B.3 and Lemma B.2
we know that if ς diverges then ς must diverge, and therefore under the assumption
that ς converges, we know must converge, so ς −→∗ ς′ for some terminal state ς′. By
Lemma B.3 we know ς ⇝∗ ς′ , and by Lemma B.2 we know C = ς′ .
Our proof of Theorem 6.2 also follows from the lemmas and theorem proven thus

far:

Proof of ST/D Strong Asymmetric Non-terminal Correspondence.

14:43

Symphony: Expressive Secure Multiparty Computation with Coordination

1. By Theorem 6.1 we know ς doesn’t reach a terminal state, so it either diverges or
converges to a stuck state. Consider each case. Assume ς diverges, then we know
by Lemma B.3 we know that there exists a distributed trace that also diverges. By
Lemma B.2 applied to the stuck distributed state, the divergent distributed state
(just established), and ς as the common ancestor, we know the stuck distributed
state can make progress towards a divergent one, which is a contradiction—so
this subcase can never happen. The other subcase is when ς reaches a stuck state,
which trivially satisfies the goal.

2. Because⇝ is confluent by Lemma B.2, ς must either converge to a terminal state,
converge to a stuck state, or diverge. (E.g., it impossible for ς ⇝∗ ς′ where ς′ is
stuck, and for ς ⇝∗ ς′′ where ς′′ can continue to transition without ever reaching
a stuck or terminal state.) If ς converged then by Theorem 6.1, which would
reach a contradiction. If ς reached a stuck state, then so would ς by (1) of this
theorem, which would reach a contradiction. Therefore, ς must diverge.

We prove one final lemma before proving our third theorem:

Lemma B.4 (D Local Stuck Preservation). If C is locally stuck and C ⇝∗ C ′ then C ′ is
locally stuck.

Proof. Induction on the number of steps in ⇝∗, and case analysis on intermediate
derivations C ⇝ C ′′.

Our proof of Theorem 6.3 then uses the prior lemma:

Proof of ST/D Soundness for Stuck States. We assume ς −→∗ ς′ where ς′ is stuck and
some C where ς ⇝ C . We must show there exists C ′ s.t. C ⇝ C ′ and C ′ locally stuck.
By Lemma B.3 we know ς ⇝∗ ς′ and ς′ is locally stuck. By confluence we have
there exists C ′ s.t. C ⇝∗ C ′ and ς′ ⇝∗ C ′. By Lemma B.4 with ς as the common
ancestor we have C ′ locally stuck.
Theorem 6.1 captures the same metatheoretical properties proved of prior work

(Wysteria [28]), whereas Theorems 6.2 and 6.3 are refinements of divergence-soundness
and stuck-state-soundness results novel to our work.

B.3 Detailed Proofs for Key Lemmas

In this section, we prove the key meta-theoretic properties of the distributed semantics,
namely forward simulation (Appendix B.3.1) and confluence (Appendix B.3.2), along
with their corollaries. The full DS-semantics rules are given in Figure 10.

B.3.1 Forward Simulation
The key lemma for proving simulation states that if global single-threaded config-
uration ς steps to ς′, then the slicing of ς steps to ς′ over multiple steps of the
multi-threaded semantics. The basic structure of the proof is, based on the form of
step from global configuration ς, to construct a sequence of distributed steps that
each updates the local configuration of some party in the mode of ς. For non-atomic

14:44

Ian Sweet, David Darais, David Heath, William Harris, Ryan Estes, and Michael Hicks

v̇ ∈ lval ::= iψ | p | ℓ#m

| ιi v̇ | 〈v̇, v̇〉
| 〈λz x . e, γ̇〉 |Æ

γ̇ ∈ lenv ≜ var* lval
δ̇ ∈ lstore ≜ loc* lval
κ̇ ∈ lstack ::=⊤ | 〈let x =□ in e | m, γ̇〉 :: κ̇

ς̇ ∈ lconfig ::= m, γ̇, δ̇, κ̇, e
C ∈ dconfig ≜ party* lconfig

γ̇ ⊢m δ̇, a ,→ δ̇, v̇

DS-Var

γ̇ ⊢m δ̇, x ,→ δ̇, γ̇(x)

DS-Lit

γ̇ ⊢m δ̇, i ,→ δ̇, i
γ̇ ⊢m δ̇, p ,→ δ̇, p

DS-Int-Binop
iψ1 = γ̇(x1)
iψ2 = γ̇(x2) ⊢m ψ

γ̇ ⊢m δ̇, x1 ⊙ x2 ,→ δ̇,J⊙K(i1, i2)
ψ

DS-PSet-Binop
p1 = γ̇(x1)
p2 = γ̇(x2)

γ̇ ⊢m δ̇, x1 ∪ x2 ,→ δ̇, p1 ∪ p2

DS-Mux
iψ1 = γ̇(x1)
iψ2 = γ̇(x2)
iψ3 = γ̇(x3) ⊢m ψ

γ̇ ⊢m δ̇, x1 ? x2 ⋄ x3 ,→ δ̇, cond(i1, i2, i3)
ψ

DS-Pair
v̇1 = γ̇(x1)
v̇2 = γ̇(x2)

γ̇ ⊢m δ̇, 〈x1, x2〉 ,→ δ̇, 〈v̇1, v̇2〉

DS-Proj
〈v̇1, v̇2〉= γ̇(x)

γ̇ ⊢m δ̇,πi x ,→ δ̇, v̇i

DS-Inj
v̇ = γ̇(x)

γ̇ ⊢m δ̇, ιi x ,→ δ̇, (ιi v̇)

DS-Fun

γ̇ ⊢m δ̇,λz x . e ,→ δ̇, 〈λz x . e, γ̇〉

DS-Ref
v̇ = γ̇(x)

γ̇ ⊢m δ̇,ref x ,→ {ℓ 7→ v̇} ⊎ δ̇,ℓ#m

DS-Deref
ℓ#q = γ̇(x)

γ̇ ⊢m δ̇, !x ,→ δ̇, δ̇(ℓ)

DS-Assign
ℓ#m = γ̇(x1)

v̇ = γ̇(x2)

γ̇ ⊢m δ̇, x1 := x2 ,→ δ̇[ℓ 7→ v̇], v̇

DS-Read
|m|= 1

γ̇ ⊢m δ̇,read ,→ δ̇, i

DS-Write
i = γ̇(x) |m|= 1

γ̇ ⊢m δ̇,write x ,→ δ̇, 0

ς̇ −→A ς̇
DS-Case-Inj

(ιi v̇) = γ̇(x1)

m, γ̇, δ̇, κ̇,case x1 {x2.e1}{x2.e2} −→A m, {x2 7→ v̇} ⊎ γ̇, δ̇, κ̇, ei

DS-Case-PSet-Emp
∅= γ̇(x1)

m, γ̇, δ̇, κ̇,case x1 {.e1}{x2 x3.e2} −→A m, γ̇, δ̇, κ̇, e1

DS-Case-PSet-Cons
({B} ⊎ p) = γ̇(x1)

m, γ̇, δ̇, κ̇,case x1 {.e1}{x2 x3.e2} −→A m, {x2 7→ {B}, x3 7→ p} ⊎ γ̇, δ̇, κ̇, e2

DS-Par
p = γ̇(x) A∈ p

m, γ̇, δ̇, κ̇,par x e −→A m∩ p, γ̇, δ̇, κ̇, e
DS-ParEmpty
p = γ̇(x) A /∈ p γ̇′ = {x ′ 7→Æ} ⊎ γ̇

m, γ̇, δ̇, κ̇,par x e −→A m, γ̇′, δ̇, κ̇, x ′

DS-App
v̇1 = γ̇(x1) v̇2 = γ̇(x2) 〈λz x . e, γ̇′〉= v̇1

m, γ̇, δ̇, κ̇, x1 x2 −→A m, {z 7→ v̇1, x 7→ v̇2} ⊎ γ̇′, δ̇, κ̇, e
DS-LetPush

κ̇′ = 〈let x =□ in e2 | m, γ̇〉 :: κ̇

m, γ̇, δ̇, κ̇,let x = e1 in e2 −→A m, γ̇, δ̇, κ̇′, e1

DS-LetPop
γ̇ ⊢m δ̇, a ,→ δ̇′, v̇ κ̇= 〈let x =□ in e | m′, γ̇′〉 :: κ̇′

m, γ̇, δ̇, κ̇, a −→A m′, {x 7→ v̇} ⊎ γ̇′, δ̇′, κ̇′, e

C⇝ C
DS-Step

ς̇ −→A ς̇
′

{A 7→ ς̇} ⊎ C⇝ {A 7→ ς̇′} ⊎ C
DS-Share
share[x1→ x2] x3 = C(m).e

p = C(m).γ̇(x1)
q = C(m).γ̇(x2)

iψ = C(p).γ̇(x3)

⊢p ψ

m = C(m).m
m = p ∪ q
q ̸= ∅

C ′ = {A 7→ (m, {x 7→ v̇} ⊎ γ̇, δ̇, κ̇, x)
| C(A) = (m, γ̇, δ̇, κ̇, e),
A∈ q =⇒ v̇ = ienc#q ,
A∈ p ∧ A /∈ q =⇒ v̇ =Æ}

C0 ⊎ C⇝ C0 ⊎ C ′

DS-Reveal
reveal[x1→ x2] x3 = C(m).e

p = C(m).γ̇(x1)
q = C(m).γ̇(x2)

ienc#p = C(p).γ̇(x3)

m= C(m).m
m= p ∪ q
q ̸=∅

C ′ = {A 7→ (m, {x 7→ v̇} ⊎ γ̇, δ̇, κ̇, x)
| C(A) = (m, γ̇, δ̇, κ̇, e),
A∈ q =⇒ v̇ = i,
A∈ p ∧ A /∈ q =⇒ v̇ =Æ}

C0 ⊎ C⇝ C0 ⊎ C ′

Figure 10 λ-Symphony distributed semantics (full figure).

14:45

Symphony: Expressive Secure Multiparty Computation with Coordination

expressions, there is exactly one step for every party in the mode; the most interesting
case are global steps that are applications SS-Par: these are simulated by a sequence
of steps which may be built from applications of SS-Par themselves or SS-Empty. For
expressions that evaluate an atom and bind the result, there is a single step, performed
by all parties.

Lemma B.5 (Forward Simulation-Step). If ς→ ς′, then ς ⇝∗ ς′ .

Proof. ς → ς′, by assumption. Let (m,γ,δ,κ, e) = ς and let (m′,γ′,δ′,κ′, e′) = ς′.
Proceed by cases on the form of the evidence of ς→ ς′:
ST-Case-Inj ς ⇝ . . .⇝ Ci ⇝ . . .⇝ ς′ , where each Ci is ς |[0,i] ⊎ ς′ |[i+1,|m|] (where

C |I denotes distributed configuration C restricted to parties at indices I).
The proof that each Ci steps to Ci+1 is as follows. Apply DS-Step, with ς̇ as the
configuration

mi ,γ,δ,κ, case x{x1.e1}{x2.e2}

ς̇′ as the configuration

mi , {x 7→ v} ⊎ γ,δ,κ, e j

where γ(x) $mi
= (ι j v)@{mi} and Ci|[0,i−1],[i+1,|m|] as C . ς̇ −→i ς̇

′ by DS-Case-Inj.
Ci+1 is Ci|[0,i−1] ⊎ {mi 7→ ς̇′} ⊎ Ci|[i+1,|m|].
The proofs for evidence constructed from rules DS-Case-PSet-Emp and DS-Case-
PSet-Cons are similar. The only distinction is that the updated local configuration in
each distributed configuration Ci+1 is formed by updating the subject of expression
to e1 in the case of Rule DS-Case-PSet-Emp and e2 in the case of Rule DS-Case-
PSet-Cons. Additionally, in the case of Rule DS-Case-PSet-Cons, the local state is
updated to bind variables x2 and x3 to the deconstructed principal and remaining
set of principals.

ST-Par ς ⇝ . . .⇝ Ci ⇝ . . .⇝ ς′ , where each Ci is ς |[0,i] ⊎ ς′ |[i+1,|m|].
The proof that each Ci steps to Ci+1 is as follows. If mi ∈ p, then apply DS-Step,
with ς̇ as the configuration

mi ,γ,δ,κ,par p e

ς̇′ as the configuration

mi ,γ,δ,κ, e

and Ci|[0,i−1],[i+1,|m|] as C . ς̇ −→i ς̇
′ by DS-Par, because mi ∈ p and thus {mi} ∩ p =

{mi} ≠ ;.
If mi /∈ p, then let ς̇′ = ς̇.
In both cases, Ci+1 is Ci|[0,i−1] ⊎ {mi 7→ ς̇′} ⊎ Ci|[i+1,|m|].

ST-ParEmpty ς ⇝ . . .⇝ Ci ⇝ . . .⇝ ς′ , where each Ci is ς |[0,i] ⊎ ς′ |[i+1,|m|].
The proof that each Ci steps to Ci+1 is as follows. Apply DS-Step, with ς̇ as the
configuration

mi ,γ,δ,κ,par p e

14:46

Ian Sweet, David Darais, David Heath, William Harris, Ryan Estes, and Michael Hicks

ς̇′ as the configuration

mi , {x 7→Æ} ⊎ γ,δ,κ, x

and Ci|[0,i−1],[i+1,|m|] as C . ς̇ −→i ς̇
′ by DS-ParEmpty, because m∩ p = ; by the fact

that c → c is an application of ST-ParEmpty; thus {mi} ∩ p = ;. Ci+1 is Ci|[0,i−1] ⊎
{mi 7→ ς̇′} ⊎ Ci|[i+1,|m|].

ST-App ς ⇝ . . .⇝ Ci ⇝ . . .⇝ ς′ , where each Ci is ς |[0,i] ⊎ ς′ |[i+1,|m|].
The proof that each Ci steps to Ci+1 is as follows. Let 〈λz x .e′,γ′〉@m= v1 = γ(x1),
which holds in the case that c→ c′ is an application of ST-App.
Apply DS-Step, with ς̇ as the configuration

mi ,γ,δ,κ, x1 x2

ς̇′ as the configuration

mi , {z 7→ v1, x2 7→ γ(x2)} ⊎ γ,δ, 〈let x = _ in e2 | γ〉 :: κ, e′

and Ci|[0,i−1],[i+1,|m|] as C . ς̇ −→i ς̇
′ by DS-App. Ci+1 is Ci|[0,i−1] ⊎ {mi 7→ ς̇′} ⊎

Ci|[i+1,|m|].
ST-LetPush ς ⇝ . . .⇝ Ci ⇝ . . .⇝ ς′ , where each Ci is ς |[0,i] ⊎ ς′ |[i+1,|m|].

The proof that each Ci steps to Ci+1 is as follows. Apply DS-Step, with ς̇ as the
configuration

mi ,γ,δ,κ,let x = e1 in e2

ς̇′ as the configuration

mi ,γ,δ, 〈let x = _ in e2 | 〉 :: κ, e1

and Ci|[0,i−1],[i+1,|m|] as C . ς̇ −→i ς̇
′ by DS-LetPush. Ci+1 is Ci|[0,i−1] ⊎ {mi 7→ ς̇′} ⊎

Ci|[i+1,|m|].
ST-LetPop e is some atom a, δ and a step to δ′ and some value v under γ in mode m,

and κ= 〈let x = _ in e′ | m′,γ′′〉 :: κ′, and γ′ = {x 7→ v} ⊎ γ′′, by assumption.
Proceed by cases on the fact that δ and a step to δ′ and some value v under γ in
mode m. Subcase: solo atom In the case that the evaluation is an application of
ST-Int, ST-Var, ST-Fun, ST-Inj, ST-Pair, ST-Proj, ST-Ref, ST-Deref, ST-Assign, ST-Fold,
ST-Unfold, ST-Read, ST-Write, ST-Embed, and ST-Star, ς ⇝ . . .⇝ Ci ⇝ . . .⇝ ς′ ,
where each Ci is ς |[0,i] ⊎ ς′ |[i+1,|m|]. The proof that each Ci steps to Ci+1 is as
follows. Apply DS-Step, with ς̇ as the configuration

mi ,γ,δ, 〈let x = _ in e′ | m′,γ′′〉 :: κ′, a

ς̇′ as the configuration

mi , {x 7→ v} ⊎ γ,δ′,κ′, e′

and Ci|[0,i−1],[i+1,|m|] as C . ς̇ −→i ς̇
′ by DS-LetPop. Ci+1 is Ci|[0,i−1] ⊎ {mi 7→ ς̇′} ⊎

Ci|[i+1,|m|].

14:47

Symphony: Expressive Secure Multiparty Computation with Coordination

Subcases: binary operation over clear data The subcases in which evaluation
is an application of ST-Binop, a is of the form x1 ⊕ x2, i·1@m = γ(x1) $m, and
i·2@m = γ(x1) $m or in which evaluation is an application of ST-PSet-Binop (i.e.,
the computation is an binary operation over clear data) is directly similar to the
previous subcase.
Subcase: mux on clear data The subcase in which evaluation is an application
of ST-Mux, a is of the form mux if x1 then x2 else x3, i·1@m= γ(x1) $m, i·2@m=
γ(x2) $m, and i·3@m= γ(x3) $m is directly similar to the previous subcases.
Subcase: binary operation on encrypted data For the subcase in which evaluation
is an application of ST-Binop, a is of the form x1 ⊕ x2, ienc#m

1 @m= γ(x1) $m, and
ienc#m
2 @m= γ(x1) $m (i.e., the computation is an binary operation over encrypted
data), ς steps to ς′ by application of DS-Step, with

m,γ,δ,κ, x1 ⊕ x2

as ς̇,

m, {x 7→ v} ⊎ γ,δ,κ, x

as ς̇′, and ς |parties\m as C . ς̇ steps to ς̇′ by ST-Binop.
Subcase: mux on encrypted data The subcase in which evaluation is an application
of ST-Mux, a is of the form mux if x1 then x2 else x3, ienc#m

1 @m = γ(x1) $m,
ienc#m
2 @m= γ(x2) $m, and ienc#m

3 @m= γ(x3) $m is directly similar to the previous
subcase.
Subcases: synchronization The subcases in which evaluation is an application of
ST-Share or ST-Reveal are directly similar to the previous two subcaes, in that they
are simulated by a single step of the distributed semantics.

The proof of weak forward simulation follows directly from Lemma B.5.

Lemma B.6 (ST Weak Forward Simulation). If ς −→∗ ς′ and ς′ is terminal, then
ς ⇝∗ ς′ and ς′ ⇝̸.

Proof. The claim holds by induction on the multistep judgment ς −→∗ ς.
Empty If the trace is empty, then ς̇ is ς̇′. ς multi-steps to ς over the empty sequence

of steps.
Non-empty If the trace is of the form ς→ ς′′→∗ ς′, then ς ⇝∗ ς′′ by Lemma B.5 and
ς′′ ⇝∗ ς′ by the inductive hypothesis. ς ⇝∗ ς by the fact that the concatenation
of two traces is a trace.

B.3.2 Confluence and End-State Determinism
In order to prove the Diamond Property, we will first claim and prove a lemma
that establishes that distinct sub-configurations that can step within each step of a
distributed configuration in fact update the local configurations of disjoint sets of
parties.

14:48

Ian Sweet, David Darais, David Heath, William Harris, Ryan Estes, and Michael Hicks

Lemma B.7. For all distributed configurations C , C0, and C1 and all non-halting dis-
tributed configurations C ′0 and C ′1 such that

C = C ′0 ⊎ C0 = C ′1 ⊎ C1

one of the following cases holds:
1. C ′0 = C ′1 and C0 = C1;
2. the domains of C ′0 and C ′1 are disjoint.

Proof. Proceed by cases on whether the domains of C ′0 and C ′1 are disjoint. If so, then
the second clause of the claim is satisfied.
Otherwise, there is some party mi in the domains of both C ′0 and C ′1. The domains of

C ′0 and C ′1 are the same, by cases on the active expression ei in the local configuration
located at mi: if ei is a non-atom, a variable occurrence, an integer literal, a binary
operation over integers, a binary operation over sets of principals, a multiplex, a pair
creation, a pair projection, a sum injection, a function creation, a reference creation, a
dereference, a reference assignment, a recursive type introduction, a read, or a write
then the domains are singletons. Thus the domains are the same, because they are
singletons that overlap.

In the case that the expression shares a value from p to q, the steps from C ′0 and C ′1
are applications of DS-Share, which has a premise that the mode is p ∪ q; thus, the
domains of C ′0 and C ′1 are the identical set of parties p ∪ q.
In the case that the expression reveals the value bound to variable x to parties q,

the steps from C ′0 and C ′1 are applications of DS-Reveal, which has a premise that the
value bound to x is encrypted for parties p, and that the active parties are p ∪ q; thus,
the domains of C ′0 and C ′1 are the same set of parties p ∪ q. C0 and C1 are thus the
same, given they are the restrictions of C to the complements of the domains of C ′0
and C ′1, respectively.
Using Lemma B.7, we can prove the Diamond Property for the transition relation

over multi-threaded configurations.

Proof. There are distributed configurations C0,0, C0,1, C1,0, and C1,1 such that

C0,0 ⊎ C0,1 = C = C1,0 ⊎ C1,1

and

C0 =C0,0 ⊎ C ′0,1

C1 =C1,0 ⊎ C ′1,1

with C0,1⇝ C ′0,1 and C1,1⇝ C ′1,1, by inverting the facts that C steps to C0 and C steps
to C1. Proceed by cases on the application of Lemma B.7 to C , C0,0, C0,1, C1,0, and
C1,1:
Identical It follows immediately that C0,0 = C1,0. Furthermore, it follows from a direct

analysis of the multi-threaded transition relation that C ′0,1 = C ′1,1. Thus

C0 = C0,0 ⊎ C ′0,1 = C1,0 ⊎ C ′1,1 = C1

by congruence. Thus for C ′ = C ′0 = C ′1, both C ⇝ C ′0 and C ⇝ C ′1.

14:49

Symphony: Expressive Secure Multiparty Computation with Coordination

Disjoint Let C ′′ be C restricted to parties in C0,0 and C1,0 and let

C ′ = C ′′ ⊎ C ′0,1 ⊎ C ′1,1

C ′ is well-defined because the domains of C ′0,1 and C ′1,0, are the domains of C0,1

and C1,1, which are disjoint by assumption of this clause.
C0⇝ C ′ by cases on the fact that C0⇝ C ′0: in each case, adjust the evidence to use
C ′′ ⊎ C1 as the distributed configuration that remains unchanged and is joined with
C0. C1⇝ C ′ by a symmetric argument.

Given that the distributed semantics satisfies the diamond property, confluence
(Lemma B.8) is a direct consequence of fundamental properties of general transition
and rewrite systems.

Lemma B.8 (DS Multi-step Confluence). If C ⇝∗ C1 and C ⇝∗ C2 then there exists C3

s.t. C1⇝
∗ C3 and C2⇝

∗ C3.

Proof. Apply the fact that any binary relation that satisfies the Diamond property
satisfies confluence [3] to the Diamond Property for the distributed step relation.
An direct corollary of confluence is that all halting states reached from the same

state are the same.

Corollary B.8.1 (DS End-state Determinism). If C ⇝∗ C1 and C ⇝∗ C2, C1 ⇝̸ and
C2 ⇝̸ then C1 = C2.

Proof. There is some distributed configuration C ′ such that C1⇝
∗ C ′ and C2⇝

∗ C ′,
by applying Lemma B.8 to the fact that C ⇝∗ C1 and C ⇝∗ C2. C ′ is C1 by the fact
that C1 is halting and thus C1 multi-steps to C ′ over the empty sequence of steps; C ′

is C2 by a symmetric argument. Thus, C1 is C2.

References

[1] Coşku Acay, Rolph Recto, Joshua Gancher, Andrew C. Myers, and Elaine Shi.
Viaduct: An extensible, optimizing compiler for secure distributed programs. In
Programming Language Design and Implementation, PLDI 2021. Association for
Computing Machinery, 2021. doi:10.1145/3453483.3454074.

[2] Abdelrahaman Aly, Marcel Keller, Dragos Rotaru, Peter Scholl, Nigel P. Smart,
and Tim Wood. SCALE-MAMBA, 2019. Accessed: 2022-01-22. URL: https:
//homes.esat.kuleuven.be/~nsmart/SCALE/.

[3] Franz Baader and Tobias Nipkow. Term Rewriting and All That. Cambridge
University Press, 1999. doi:10.1017/CBO9781139172752.

[4] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theorems
for non-cryptographic fault-tolerant distributed computation. In Symposium on
Theory of Computing, STOC 1988. Association for Computing Machinery, 1988.
doi:10.1145/62212.62213.

14:50

https://doi.org/10.1145/3453483.3454074
https://homes.esat.kuleuven.be/~nsmart/SCALE/
https://homes.esat.kuleuven.be/~nsmart/SCALE/
https://doi.org/10.1017/CBO9781139172752
https://doi.org/10.1145/62212.62213

Ian Sweet, David Darais, David Heath, William Harris, Ryan Estes, and Michael Hicks

[5] Lennart Braun, Daniel Demmler, Thomas Schneider, and Oleksandr Tkachenko.
MOTION – A framework for mixed-protocol multi-party computation. ACM
Transactions on Privacy and Security, 25(2), 2022. doi:10.1145/3490390.

[6] Paul Bunn, Jonathan Katz, Eyal Kushilevitz, and Rafail Ostrovsky. Efficient
3-party distributed ORAM. In Security and Cryptography for Networks, SCN 2020.
Springer International Publishing, 2020. doi:10.1007/978-3-030-57990-6_11.

[7] Niklas Büscher, Daniel Demmler, Stefan Katzenbeisser, David Kretzmer, and
Thomas Schneider. HyCC: Compilation of hybrid protocols for practical secure
computation. In Conference on Computer and Communications Security, CCS
2018. Association for Computing Machinery, 2018. doi:10.1145/3243734.3243786.

[8] Luís Cruz-Filipe and Fabrizio Montesi. A core model for choreographic pro-
gramming. In Formal Aspects of Component Software, FACS 2016. Springer
International Publishing, 2016. doi:10.1007/978-3-319-57666-4_3.

[9] Luís Cruz-Filipe and Fabrizio Montesi. Procedural choreographic programming.
In Formal Techniques for Distributed Objects, Components, and Systems, FORTE
2017. Springer International Publishing, 2017. doi:10.1007/978-3-319-60225-7_7.

[10] Mila Dalla Preda, Maurizio Gabbrielli, Saverio Giallorenzo, Ivan Lanese, and
Jacopo Mauro. Dynamic choreographies. In Coordination Models and Languages,
COORDINATION 2015. Springer International Publishing, 2015. doi:10.1007/978-
3-319-19282-6_5.

[11] Ivan Damgård, Valerio Pastro, Nigel P. Smart, and Sarah Zakarias. Multiparty
computation from somewhat homomorphic encryption. In Advances in Cryptology,
CRYPTO 2012. Springer International Publishing, 2012. doi:10.1007/978-3-642-
32009-5_38.

[12] Daniel Demmler, Thomas Schneider, and Michael Zohner. ABY - A framework
for efficient mixed-protocol secure two-party computation. In Network and
Distributed System Security Symposium, NDSS 2015. The Internet Society, 2015.
doi:10.14722/ndss.2015.23113.

[13] Brett Hemenway Falk and Rafail Ostrovsky. Secure merge with o(n log log n)
secure operations. In Information-Theoretic Cryptography, ITC 2021. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2021. doi:10.4230/LIPIcs.ITC.2021.7.

[14] Martin Franz, Andreas Holzer, Stefan Katzenbeisser, Christian Schallhart, and
Helmut Veith. CBMC-GC: An ANSI C compiler for secure two-party computations.
In Compiler Construction, CC 2014. Springer International Publishing, 2014.
doi:10.1007/978-3-642-54807-9_15.

[15] Oded Goldreich. Towards a theory of software protection and simulation by
oblivious RAMs. In Symposium on Theory of Computing, STOC 1987. Association
for Computing Machinery, 1987. doi:10.1145/28395.28416.

[16] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game
or A completeness theorem for protocols with honest majority. In Symposium on
Theory of Computing, STOC 1987. Association for Computing Machinery, 1987.
doi:10.1145/28395.28420.

14:51

https://doi.org/10.1145/3490390
https://doi.org/10.1007/978-3-030-57990-6_11
https://doi.org/10.1145/3243734.3243786
https://doi.org/10.1007/978-3-319-57666-4_3
https://doi.org/10.1007/978-3-319-60225-7_7
https://doi.org/10.1007/978-3-319-19282-6_5
https://doi.org/10.1007/978-3-319-19282-6_5
https://doi.org/10.1007/978-3-642-32009-5_38
https://doi.org/10.1007/978-3-642-32009-5_38
https://doi.org/10.14722/ndss.2015.23113
https://doi.org/10.4230/LIPIcs.ITC.2021.7
https://doi.org/10.1007/978-3-642-54807-9_15
https://doi.org/10.1145/28395.28416
https://doi.org/10.1145/28395.28420

Symphony: Expressive Secure Multiparty Computation with Coordination

[17] Koki Hamada, Ryo Kikuchi, Dai Ikarashi, Koji Chida, and Katsumi Takahashi. Prac-
tically efficient multi-party sorting protocols from comparison sort algorithms.
In Information Security and Cryptology, ICISC 2012. Springer International Pub-
lishing, 2012. doi:10.1007/978-3-642-37682-5_15.

[18] Andrew K. Hirsch and Deepak Garg. Pirouette: Higher-order typed functional
choreographies. In Principles of Programming Languages, POPL 2022. Association
for Computing Machinery, 2022. doi:10.1145/3498684.

[19] Martin Hirt and Ueli Maurer. Player simulation and general adversary structures
in perfect multiparty computation. Journal of Cryptology, 13(1), 2000. doi:
10.1007/s001459910003.

[20] Yan Huang, David Evans, and Jonathan Katz. Private set intersection: Are garbled
circuits better than custom protocols? In Network and Distributed System Security
Symposium, NDSS 2012. The Internet Society, 2012.

[21] Muhammad Ishaq, Ana L. Milanova, and Vassilis Zikas. Efficient MPC via
program analysis: A framework for efficient optimal mixing. In Computer and
Communications Security, CCS 2019. Association for Computing Machinery, 2019.
doi:10.1145/3319535.3339818.

[22] Florian Kerschbaum. Automatically optimizing secure computation. In Computer
and Communications Security, CCS 2011. Association for Computing Machinery,
2011. doi:10.1145/2046707.2046786.

[23] Sven Laur, Jan Willemson, and Bingsheng Zhang. Round-efficient oblivious
database manipulation. In Information Security, ISC 2011. Springer International
Publishing, 2011. doi:10.1007/978-3-642-24861-0_18.

[24] Chang Liu, Xiao Shaun Wang, Kartik Nayak, Yan Huang, and Elaine Shi. ObliVM:
A programming framework for secure computation. In Symposium on Security
and Privacy, SP 2015. IEEE Computer Society Press, 2015. doi:10.1109/SP.2015.29.

[25] Fabrizio Montesi. Choreographic Programming. PhD thesis, 2013.
[26] Benjamin Mood, Debayan Gupta, Henry Carter, Kevin Butler, and Patrick Traynor.

Frigate: A validated, extensible, and efficient compiler and interpreter for secure
computation. In European Symposium on Security and Privacy, EuroSP 2016.
IEEE Computer Society Press, 2016. doi:10.1109/EuroSP.2016.20.

[27] Jaak Randmets. Programming Languages for Secure Multi-party Computation
Application Development. PhD thesis, 2017.

[28] Aseem Rastogi, Matthew A. Hammer, and Michael Hicks. Wysteria: A pro-
gramming language for generic, mixed-mode multiparty computations. In
Symposium on Security and Privacy, SP 2014. IEEE Computer Society Press, 2014.
doi:10.1109/SP.2014.48.

[29] Aseem Rastogi, Piotr Mardziel, Michael Hicks, and Matthew A. Hammer. Knowl-
edge inference for optimizing secure multi-party computation. In Programming
Languages and Analysis for Security, PLAS 2013. Association for Computing
Machinery, 2013. doi:10.1145/2465106.2465117.

14:52

https://doi.org/10.1007/978-3-642-37682-5_15
https://doi.org/10.1145/3498684
https://doi.org/10.1007/s001459910003
https://doi.org/10.1007/s001459910003
https://doi.org/10.1145/3319535.3339818
https://doi.org/10.1145/2046707.2046786
https://doi.org/10.1007/978-3-642-24861-0_18
https://doi.org/10.1109/SP.2015.29
https://doi.org/10.1109/EuroSP.2016.20
https://doi.org/10.1109/SP.2014.48
https://doi.org/10.1145/2465106.2465117

Ian Sweet, David Darais, David Heath, William Harris, Ryan Estes, and Michael Hicks

[30] Aseem Rastogi, Nikhil Swamy, and Michael Hicks. Wys∗: A DSL for verified
secure multi-party computations. In Principles of Security and Trust, POST 2019.
Springer International Publishing, 2019. doi:10.1007/978-3-030-17138-4_5.

[31] Andrei Sabelfeld and Andrew C Myers. Language-based information-flow
security. IEEE Journal on Selected Areas in Communications, 21(1), 2003.
doi:10.1109/JSAC.2002.806121.

[32] Berry Schoenmakers. MPyC: secure multiparty computation in Python, 2019.
Accessed: 2022-01-22. URL: https://github.com/lschoe/mpyc.

[33] EbrahimM. Songhori, SiamU. Hussain, Ahmad-Reza Sadeghi, Thomas Schneider,
and Farinaz Koushanfar. TinyGarble: Highly compressed and scalable sequential
garbled circuits. In Symposium on Security and Privacy, SP 2015. IEEE Computer
Society Press, 2015. doi:10.1109/SP.2015.32.

[34] Abraham Waksman. A permutation network. Journal of the ACM, 15(1), 1968.
doi:10.1145/321439.321449.

[35] Xiao Wang, Hubert Chan, and Elaine Shi. Circuit ORAM: On tightness of the
Goldreich-Ostrovsky lower bound. In Computer and Communications Security,
CCS 2015. Association for Computing Machinery, 2015. doi:10.1145/2810103.
2813634.

[36] Xiao Wang, Alex J. Malozemoff, and Jonathan Katz. EMP-toolkit: Efficient
MultiParty computation toolkit, 2016. Accessed: 2022-01-22. URL: https://
github.com/emp-toolkit.

[37] Andrew Chi-Chih Yao. How to generate and exchange secrets. In Symposium
on Foundations of Computer Science, SFCS 1986. IEEE Computer Society Press,
1986. doi:10.1109/SFCS.1986.25.

[38] Qianchuan Ye and Benjamin Delaware. Oblivious algebraic data types. In
Principles of Programming Languages, POPL 2022. Association for Computing
Machinery, 2022. doi:10.1145/3498713.

[39] Samee Zahur and David Evans. Obliv-C: A language for extensible data-oblivious
computation. Cryptology ePrint Archive, Paper 2015/1153, 2015. Accessed: 2022-
01-22. URL: https://eprint.iacr.org/2015/1153.

[40] Yihua Zhang, Aaron Steele, and Marina Blanton. PICCO: A general-purpose
compiler for private distributed computation. In Computer and Communications
Security, CCS 2013. Association for Computing Machinery, 2013. doi:10.1145/
2508859.2516752.

14:53

https://doi.org/10.1007/978-3-030-17138-4_5
https://doi.org/10.1109/JSAC.2002.806121
https://github.com/lschoe/mpyc
https://doi.org/10.1109/SP.2015.32
https://doi.org/10.1145/321439.321449
https://doi.org/10.1145/2810103.2813634
https://doi.org/10.1145/2810103.2813634
https://github.com/emp-toolkit
https://github.com/emp-toolkit
https://doi.org/10.1109/SFCS.1986.25
https://doi.org/10.1145/3498713
https://eprint.iacr.org/2015/1153
https://doi.org/10.1145/2508859.2516752
https://doi.org/10.1145/2508859.2516752

Symphony: Expressive Secure Multiparty Computation with Coordination

About the authors

Ian Sweet isweet@galois.com

David Darais darais@galois.com

David Heath heath.davidanthony@gatech.edu

William Harris wharris@galois.com

Ryan Estes restes@uvm.edu

Michael Hicks Michael Hicks (mwh@cs.umd.edu) now works at
Amazon. This work was carried out while employed by the Uni-
versity of Maryland, College Park.

14:54

mailto:isweet@galois.com
mailto:darais@galois.com
mailto:heath.davidanthony@gatech.edu
mailto:wharris@galois.com
mailto:restes@uvm.edu
mailto:mwh@cs.umd.edu

	1 Introduction
	2 Background and Related Work
	2.1 Prior Frameworks, Broadly
	2.2 Coordination

	3 Symphony: Expressive, Coordinated MPC
	3.1 Basics
	3.2 Advanced Coordination
	3.3 Comparison to Related Work

	4 λ-Symphony: Syntax and Semantics
	4.1 Syntax
	4.2 Overview
	4.3 Values
	4.4 Operational Rules

	5 Distributed Semantics
	5.1 Configurations
	5.2 Operational Semantics

	6 Single-Threaded Soundness
	7 Implementation
	8 Experimental Evaluation
	8.1 Expressiveness and Ergonomics
	8.2 Performance

	9 Conclusion
	A Implementation, Experiments, and Case Studies
	A.1 Implementation
	A.2 Benchmark Programs
	A.3 Committee Election in Wysteria
	A.4 Performance vs Obliv-C
	A.5 Security vs. Performance for Secure-Shuffle

	B Metatheory
	B.1 Single-Threaded Semantics
	B.2 Proof Sketches for Correspondence Theorems
	B.3 Detailed Proofs for Key Lemmas
	B.3.1 Forward Simulation
	B.3.2 Confluence and End-State Determinism

	About the authors

