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We introduce Qunity, a new quantum programming language designed to treat quantum computing as a
natural generalization of classical computing. Qunity presents a unified syntax where familiar programming
constructs can have both quantum and classical effects. For example, one can use sum types to implement the
direct sum of linear operators, exception-handling syntax to implement projective measurements, and aliasing
to induce entanglement. Further, Qunity takes advantage of the overlooked bqp subroutine theorem, allowing
one to construct reversible subroutines from irreversible quantum algorithms through the uncomputation
of “garbage” outputs. Unlike existing languages that enable quantum aspects with separate add-ons (like a
classical language with quantum gates bolted on), Qunity provides a unified syntax and a novel denotational
semantics that guarantees that programs are quantum mechanically valid. We present Qunity’s syntax, type
system, and denotational semantics, showing how it can cleanly express several quantum algorithms. We
also detail how Qunity can be compiled into a low-level qubit circuit language like OpenQasm, proving the
realizability of our design.
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1 INTRODUCTION

Quantum computing generalizes classical computing. That is, any efficiently-implementable clas-
sical algorithm can also be efficiently implemented on a quantum computer. However, quantum
programming languages today do not fully leverage this connection. Rather, to varying degrees,
they impose a separation between their classical and quantum programming constructs. Such a
separation owes in part to the qram computing model [Knill 1996], and is reflected in slogans

∗Work completed before starting at Amazon.

Authors’ addresses: Finn Voichick, University of Maryland, College Park, USA, finn@umd.edu; Liyi Li, University of
Maryland, College Park, USA, liyili2@umd.edu; Robert Rand, University of Chicago, Chicago, USA, rand@uchicago.edu;
Michael Hicks, University of Maryland and Amazon, College Park, USA, mwh@cs.umd.edu.

© 2023 Copyright held by the owner/author(s).
2475-1421/2023/1-ART32
https://doi.org/10.1145/3571225

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 32. Publication date: January 2023.

This work is licensed under a Creative Commons Attribution 4.0 International License.

http://creativecommons.org/licenses/by/4.0/
https://www.acm.org/publications/policies/artifact-review-and-badging-current
HTTPS://ORCID.ORG/0000-0002-1913-4178
HTTPS://ORCID.ORG/0000-0001-8184-0244
HTTPS://ORCID.ORG/0000-0001-6842-5505
HTTPS://ORCID.ORG/0000-0002-2759-9223
https://doi.org/10.1145/3571225
https://doi.org/10.1145/3571225
https://orcid.org/0000-0002-1913-4178
https://orcid.org/0000-0001-8184-0244
https://orcid.org/0000-0001-6842-5505
https://orcid.org/0000-0002-2759-9223
https://doi.org/10.1145/3571225


32:2 Finn Voichick, Liyi Li, Robert Rand, and Michael Hicks

such as “quantum data, classical control” [Selinger 2004]. While keeping the quantum and classical
separated in the language makes some sense in the near term (the “nisq” era [Preskill 2018]),
it artificially limits the long-term potential of quantum algorithm designs. It also fails to take
advantage of a classical programmer’s intuition and limits the reuse of classical code and ideas in
quantum algorithms.

In this paper, we present Qunity (“kyoo-nih-tee”), a new programming language whose program-
ming constructs will be familiar to classical programmers but are generalized to include quantum
behavior. Thus, Qunity aims to unify quantum and classical concepts in a single language. Qunity
draws inspiration from prior languages which contain some unified constructs [Altenkirch and
Grattage 2005; Bichsel et al. 2020], but Qunity broadens and deepens that unification.

1.1 Motivating Example: Deutsch’s Algorithm

To give a sense of Qunity’s design, we present Deutsch’s algorithm [Deutsch 1985]. Given black-box

access to a function 5 : {0, 1} → {0, 1}, this algorithm computes whether or not 5 (0)
?
= 5 (1) using

only a single query to the function.

deutsch(5 ) ..=

let G =Bit (had 0) in(
ctrl (5 G)

{
0 ↦→ G

1 ↦→ G ⊲ gphaseBit(c)

}
Bit Bit

)
⊲ had

The algorithm has three steps:

(1) Apply a Hadamard operator had to a qubit in the zero state, yielding a qubit in state |+⟩; the
let expression binds this qubit to G .

(2) Query an oracle to conditionally flip the phase of the qubit, coherently performing the linear
map:

|G⟩ ↦→ (−1) 5 (G ) |G⟩

This step is implemented by the ctrl expression: if 5 G is 0 then |G⟩ is unchanged, but if 5 G
is 1 then G ⊲ gphaseBit(c) applies a phase of 4

8c (which is −1) to |G⟩.
(3) Finally, apply a Hadamard operator to the qubit output from step 2.

If 5 (0) ≠ 5 (1), the output will be |1⟩ up to global phase; otherwise, it will be |0⟩.
Qunity’s version of Deutsch’s algorithm reads like a typical functional program and is more

general than typically presented versions. Some presentations [Nielsen and Chuang 2010] require
constructing a two-qubit unitary oracle *5 from the classical function 5 such that *5 |G,~⟩ =

|G,~ ⊕ 5 (G)⟩ for all G,~ ∈ {0, 1}. In Qunity, no separate oracle is needed; the “oracle” is 5 itself.
Existing programming languages [Amy et al. 2017; Li et al. 2022; Rand et al. 2019] support automatic
construction of oracles*5 from explicitly-written programs 5 , but these require that the implemen-
tation of 5 is strictly classical. For example, Silq’s [Bichsel et al. 2020] uncomputation construct
requires that the program of interest be “qfree,” with strictly classical behavior, and Quipper [Green
et al. 2013] supports automatic oracle construction only from classical Haskell programs. In Qunity,
5 can be an arbitrary quantum algorithm that takes a qubit as input and produces a qubit as output,
even if it uses measurement or interspersed classical operations.

Qunity takes advantage of the bqp subroutine theorem [Bennett et al. 1997; Watrous 2009], which
allows for the construction of reversible subroutines from arbitrary (not necessarily reversible)
quantum algorithms. If the quantum algorithm has probabilistic behavior, the reversible subroutine
may have a degree of error, but the bqp subroutine theorem places reasonable bounds on this error.
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These bounded-error subroutines are commonly used in the design of quantum algorithms [Kothari
2014], but existing programming languages provide no convenient way to construct and compose
them, a gap that Qunity fills.
According to Qunity’s type system (Section 3), the following typing judgment is valid:

⊢ 5 : Bit ⇛ Bit

∅ ∥ ∅ ⊢ deutsch(5 ) : Bit

The rule says: “given an arbitrary quantum algorithm for computing a function 5 : {0, 1} →

{0, 1}, our deutsch(5 ) program outputs a bit.” Per Qunity’s formal semantics (Section 4),
deutsch(5 ) corresponds to a single-qubit pure state whenever 5 corresponds to a single-qubit
quantum channel. This is possible because of the unique way that Qunity’s semantics interweaves
the usage of pure and mixed quantum states.

1.2 Design Principles

Qunity’s design is motivated by four key principles: generalization of classical constructs, expres-
siveness, compositionality, and realizability.

Generalization of classical constructs. To make quantum computing easier for programmers,
Qunity allows them to draw on intuition from classical computing. Many elements of Qunity’s
syntax are simply quantum generalizations of classical constructs: for example, tensor products
generalize pairs, projective measurements generalize try-catch, and quantum control generalizes
pattern matching. Rather than use linear types (as in Qwire [Paykin et al. 2017] and the Proto-
Quipper languages [Fu et al. 2020; Ross 2015]), Qunity allows variables to be freely duplicated and
discarded as in classical languages, but its semantics treats variable duplication as an entangling
operation, and variable discarding as a partial trace.

Expressiveness. Qunity allows for writing algorithms at a higher level of abstraction than existing
languages. One way that it does this is through algebraic data types: rather than manipulate
fixed-length arrays of qubits directly, programmers can work with more complicated types. For
example, in our quantum walk algorithm given in Section 5.3, we deal with superpositions of
variable-length lists. Qunity’s semantics also allows one to “implement” mathematical objects
that are frequently used in algorithm analysis but seldom used in algorithm implementation. For
example, the semantics of a Qunity program can be a superoperator [Kaye et al. 2007, p. 57], an
isometry [Roman 2008, p. 210], or a projector [Nielsen and Chuang 2010, p. 70], and these can be
composed in useful ways.
In detail, the operators that make up Qunity’s semantics are drawn from a broad class called

Kraus operators [Kaye et al. 2007, p. 60], which include norm-decreasing operators such as projectors.
Projectors are used in quantum algorithms, but more often for analyzing quantum algorithms,
and few quantum languages allow projectors to be directly implemented. Motivated by the fact
that operators produced by the bqp subroutine theorem can be viewed as norm-decreasing rather
than norm-preserving, we give Qunity programs norm non-increasing semantics. Expanding the
language to include projectors turns out to be quite useful: We can treat the null space of a projector
as a sort of “exception space,” allowing us to reason about quantum projectors by a syntactic analogy
with classical programming strategies, namely exception handling. This allows us to implement
a few more useful program transformations, like a “reflection” in the style of Grover’s diffusion
operator. Given the ability to implement a projector % , it is straightforward to implement the
unitary reflection (2% − � ), a common feature in quantum algorithms.
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Compositionality. Qunity programs can be composed in useful ways. For example, our ctrl
construct uses the bqp subroutine theorem [Bennett et al. 1997; Watrous 2009] to reversibly use
an irreversible quantum algorithm as a condition for executing another—this happens in step 2 of
our version of Deutsch’s algorithm. In general, Qunity’s denotational semantics allows composing
programs that are mathematically described in different ways, like defining an expression’s “pure”
operator semantics in terms of a subexpression’s “mixed” superoperator semantics. By contrast,
prior languages have not managed such a compositional semantics [Grattage 2011, 2006; Ying 2016],
as discussed below.

Realizability. We have designed Qunity so that it can be compiled into qubit-based unitary
circuits written in a lower-level language such as OpenQasm. We have designed such a compilation
procedure and proven that the circuits it produces correctly implement Qunity’s denotational
semantics. In Section 6, we give an overview of our compilation strategy, and we include the
full details and proofs in the supplemental report [Voichick et al. 2022a]. To limit our analysis to
finite-dimensional Hilbert spaces, we limit Qunity programs to working with finite types only.
Some quantum languages [Ying 2016, Chapter 7] work with infinite-dimensional Hilbert spaces
such as Fock spaces, making it possible to coherently manipulate superpositions of unbounded
lists, for example. However, since qubit-based circuits work only with finite-dimensional Hilbert
spaces, allowing Qunity to work with infinite data types would mean that compilation would have
to approximate infinite-dimensional Hilbert spaces with finite ones, which is challenging to do
satisfyingly. For this reason, Qunity has no notion of recursive types, though we use classical
metaprogramming to define parameterized types.

1.3 Related Work

Table 1. Comparison with existing languages

Language

Feature Qunity Silq Qml Spm Quipper QuGcl

Decoherence ✓ ✓ ✓ ✗ ✓ ✓

Denotational Semantics ✓ ✗ ✓* ✗ ✗ ✓*
Quantum Sum Types ✓ ✗ ✓ ✓ ✗ ✗

Isometries ✓ ✓ ✓* ✗ ✓* ✗

Projectors ✓ ✗ ✗ ✗ ✗ ✓

Classical Uncomputation ✓ ✓ ✗ ✗ ✓ ✗

Quantum Uncomputation ✓ ✗ ✗ ✗ ✗ ✗

Qunity’s design was inspired by several existing languages, summarized in Table 1: Silq [Bichsel
et al. 2020], Qml [Altenkirch and Grattage 2005], the symmetric pattern matching language [Sabry
et al. 2018] (hereafter Spm), Quipper [Green et al. 2013], and QuGcl [Ying 2016, Chapter 6]. This
table shows some of Qunity’s most interesting features and whether these features are present in
existing languages. The features listed are:

• Decoherence. All of these languages support some form of measurement or discarding, except
for Spm, which is restricted to unitary operators.

• Compositional denotational semantics. Most of these languages define an operational seman-
tics, not a denotational one. QuGcl’s denotational semantics is explicitly non-compositional,
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meaning that its equivalence relation does not allow “equivalent” programs to be substituted
as subexpressions. Later work on Qml [Grattage 2011, 2006] found that the denotational
semantics derived from Qml’s operational semantics was non-compositional because of
entangled “garbage” outputs related to sum types, and Qml’s denotational semantics is only
partially defined even with sum types removed.

• Quantum sum types. Like Qml and Spm, Qunity can coherently manipulate tagged unions,
and the “tag” qubit can be in superposition.

• Isometries. Silq is the only other language here with a semantics defined in terms of non-
unitary isometries. Quipper and Qml allow isometries to be implemented through qubit
initialization, but their semantics are defined only in terms of unitaries, meaning there is no
notion of equivalence between different unitaries implementing the same isometry.

• Projectors. Like with isometries, Quipper allows projectors to be implemented through
assertative termination, but there is no notion of equivalence between different unitaries
implementing the same projector.

• Classical uncomputation. Silq and Quipper both have convenient facilities for converting
(irreversible) classical programs into reversible quantum subroutines.

• Quantum uncomputation. Silq can only uncompute “qfree” programs that are strictly classical.
Quipper does have some facilities for uncomputing values produced by quantum programs,
such as the with_computed function. However, this function’s correctness depends on con-
ditions that are nontrivial to verify. In the words of Quipper’s documentation: “This is a
very general but relatively unsafe operation. It is the user’s responsibility to ensure that the
computation can indeed be undone.” In Qunity, safety is assured.

1.4 Contributions and Roadmap

Our core contribution is a new quantum programming language, Qunity, designed to unify classical
and quantum computing through an expressive generalization of classical programming constructs.
Qunity’s powerful semantics brings constructions commonly used in algorithm analysis—such
as bounded-error quantum subroutines, projectors, and direct sums—into the realm of algorithm
implementation. We describe Qunity’s formal syntax (Section 2), an efficiently checkable typing
relation (Section 3), a compositional denotational semantics (Section 4), and a strategy for compiling
to lower-level unitary quantum circuits (Section 6). We prove that well-typed Qunity programs
have a well-defined semantic denotation, and we show that denotation is realizable by proving that
our compilation strategy does indeed produce correct circuits. We also show how Qunity can be
used to program several interesting examples, including Grover’s algorithm, the quantum Fourier
transform, and a quantum walk (Section 5).

2 SYNTAX

Qunity’s formal syntax is defined in Figures 1–3. Qunity’s types are shown in Figure 1. The algebraic
data types) have essentially the same interpretation as in a typical classical programming language,
with the caveat that values can be in superposition. The symbols ⊕ and ⊗ are used because of how
these data types will correspond to direct sums and tensor products. The two program types � differ
in whether they decohere quantum states: programs of type ) ⇝ ) ′ will have a semantics defined
by an (often unitary) linear operator, while programs of type ) ⇛ ) ′ will have a semantics defined
by a superoperator, a completely positive trace-non-increasing map that may involve measurement
or discarding.

Qunity’s term language is defined in Figure 3: expressions 4 are assigned data types) and programs

5 are assigned program types � . Figure 4 shows additional derived forms. In the figure, G ranges over
some infinite set X of variables (for example Ascii strings), and A ranges over some representation
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) ....= (data type)

Void (bottom)

| () (unit)

| ) ⊕ ) (sum)

| ) ⊗ ) (product)

� ....= (program type)

) ⇝ ) (coherent map)

| ) ⇛ ) (quantum channel)

Fig. 1. �nity types

Γ
....= (context)

∅ (empty)

| Γ, G : ) (binding)

dom(∅) ..= ∅ (dom-none)

dom(Γ, G : ) ) ..= dom(Γ) ∪ {G} (dom-bind)

Fig. 2. Typing contexts

4 ....= (expression)

() (unit)

| G (variable)

| (4,4) (pair)

| ctrl 4



4 ↦→ 4

· · ·

4 ↦→ 4


) )

(coherent control)

| try 4 catch 4 (error recovery)

| 5 4 (application)

5 ....= (program)

u3(A,A,A) (qubit gate)

| left)⊕) (left tag)

| right)⊕) (right tag)

| _4
)
↦−→ 4 (abstraction)

| rphase)

{
4 ↦→ A

else ↦→ A

}
(relative phase)

Fig. 3. Base �nity syntax

of real numbers (one example of which is defined in the supplemental report [Voichick et al. 2022a]).
Some syntax elements use type annotations ) , which are grayed out to reduce visual clutter in the
more complex examples. A type inference algorithm could allow these annotations could to be
removed, and throughout this paper, we occasionally omit type annotations for brevity.
Qunity makes use of standard classical programming language features generalized to the

quantum setting. As examples, pairs generalize to creating tensor products of quantum states, sums
generalize to allowing their data to be in superposition, and ctrl generalizes classical pattern-
matching (where in branch 4 ↦→ 4′ the 4 is a pattern which may bind variables in 4′) to quantum

control flow using superposition. The type system requires that the left-hand-side patterns are non-
overlapping and thus correspond to orthogonal subspaces, and that the right-hand-side expressions
appropriately use all of the variables from the condition expression, ensuring that this data is
reversibly uncomputed rather than discarded. In general, we allow the left-hand-side patterns to
be non-exhaustive, in which case the semantics is a norm-decreasing operator rather than norm-
preserving. Operationally, a decrease in norm corresponds to the probability of being in a special
“exceptional state.”

Existing languages like Proq [Li et al. 2020] have similarly used norm-decreasing operators such
as projectors to describe assertions. Their system is effective for testing and debugging, but Qunity
takes these projective assertions a step further by allowing them to be used in the control flow itself.
Failed assertions are treated as exceptions, which can be dynamically caught and handled using the
try-catch construct, generalizing another familiar classical programming construct to the quantum
setting. The quantum behavior here is well-defined using the language of projective measurements.
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Bit ..= () ⊕ ()

0 ..= leftBit()

1 ..= rightBit()

5 †) ..= (_(5 G)
)
↦−→ G)

Maybe () ) ..= () ⊕ )

nothing)
..= leftMaybe () )()

just)
..= rightMaybe () )

) ⊗0 ..= ()

) ⊗(=+1) ..= ) ⊗ ) ⊗=

4⊗0 ..= ()

4⊗(=+1) ..= (4,4⊗=)

gphase) (A)
..= rphase)

{
G ↦→ A

else ↦→ A

}

(4 ⊲ 5 ) ..= (5 4)

(let 41 =) 42 in 43)
..= (42 ⊲ _41

)
↦−→ 43)

(5 ◦) 5 ′) ..= (_G
)
↦−→ 5 (5 ′ G))

fst)0⊗)1
..= _(G0,G1)

)0⊗)1
↦−−−−→ G0

snd)0⊗)1
..= _(G0,G1)

)0⊗)1
↦−−−−→ G1

had ..= u3(c/2,0,c)

plus ..= had 0

minus ..= had 1

equals) (4)
..=

©«
_G

)
↦−→

try(G ⊲ _4
)
↦−→ 1) catch 0

ª®¬
reflect) (4)

..= rphase)

{
4 ↦→ 0

else ↦→ c

}

Fig. 4. Syntactic sugar

Assuming projector % is implemented by Qunity program 5% , and state |k ⟩ is produced by Qunity
program 4k , the Qunity expression try just) (5% 4k ) catch nothing) (using Maybe syntax from
Figure 4) produces the mixed state defined by the density operator:

% |k ⟩⟨k |% ⊕ ⟨k | (� − %) |k ⟩ .

This state has % |k ⟩ in the “just” subspace and the norm of (� − %) |k ⟩ in the “nothing” subspace.
Though we use the language of exception handling, this construct is also useful for non-exceptional
conditions, like in the definition of the equals program in Figure 4. This function can be used to
measure whether two states are equal; for example, a simple “coin flip” can be implemented by
(had0 ⊲equalsBit (1)), which applies a Hadamard gate to a qubit in the |0⟩ state and then measures
whether the result is |1⟩.

Notice that the innermost lambda in the definition of equals uses a non-exhaustive pattern on

the left side; the program “_0
Bit
↦−−→ 1” implements the projector |1⟩⟨0|. While a classical operational

semantics typically interprets lambdas in terms of substitution of arguments for parameters, Qunity’s
semantics is best interpreted as a more general linear mapping. This interpretation means that
Qunity’s type system can allow for a much wider range of expressions on the left “parameter” side
of the lambda. As an extreme case, consider the definition of “5 †) ” syntax in Figure 4, which applies
a function on the left side. Semantically, this lambda corresponds to the adjoint of 5 , and can be
interpreted like this: “given 5 (G) as input, output G .” (However, this interpretation is imprecise
when 5 is norm-decreasing and its adjoint is not its inverse.)

Two of Qunity’s constructs have no classical analog. The u3 construct is a parameterized gate
that allows us to implement any single-qubit gate [Cross et al. 2017]; e.g., it is used to implement
had, per Figure 4. The rphase construct induces a relative phase of 48A , where the value A comes
from the first branch for states in the subspace spanned by the first branch’s parameter 4 and from
the second branch for states in the orthogonal subspace. It is used to implement gphase in Figure 4,
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used to implement conditional phase flip from Deutsch’s algorithm (Section 1.1). More generally, it
can be used to implement reflections, as used in Grover’s search algorithm, the iterator for which is
shown below. We see that it includes the same conditional phase flip as Deutsch’s, composed with
reflectBit⊗= (plus

⊗=) to perform inversion about the mean. If the state |k ⟩ is implemented by the
expression 4k , then reflect) (4) implements the reflection (2|k ⟩⟨k | − � ) by coherently applying a
phase of 48c = −1 to any state orthogonal to |k ⟩.

grover= (5 )
..=_G

Bit⊗=

↦−−−−→ ctrl 5 G

{
0 ↦→ G

1 ↦→ G ⊲ gphaseBit⊗=(c)

}
Bit Bit⊗=

⊲ reflectBit⊗= (plus
⊗=)

Several lambda calculi [Arrighi and Dowek 2017; Selinger and Valiron 2009; van Tonder 2004]
have explored the use of higher-order functions in a quantum setting, but Qunity does not. We aim
for Qunity’s denotational semantics to closely correspond to existing notations and conventions
used in quantum algorithms, and higher-order functions and “superpositions of programs” are
uncommon and inconsistently defined. In our experience, quantum mechanical notation (and to
some degree quantum computing in general) is ill-suited for higher-order programs. In particular,
we interpret programs 5 as quantum operations acting on their argument, and expressions 4 as
quantum operations acting on their free variables, but allowing for higher-order functions means
that programs can also have free variables, and one must take some sort of tensor product of a
program’s two inputs. To avoid this extra complication, we have first-order functions only, and our
typing relation prevents them from containing free variables.

3 TYPING

This section describes Qunity’s type system.We prove that well-typed programs have a well-defined
semantics (given in Section 4), and we have implemented a type checker for Qunity programs
[Voichick et al. 2022b].
Qunity’s type system takes the form of three different, interdependent typing judgments: pure

expression typing, mixed expression typing, and program typing. The distinction between pure and
mixed typing comes from the fact that there are two ways to mathematically represent quantum
states depending on whether any classical probability is involved: pure states are described by
state vectors and do not involve classical probability, while mixed states are described by density
matrices, usually interpreted as a classical probability distribution over pure states. Program types
are similarly divided into pure and mixed versions, where pure programs correspond to linear
operators from pure states to pure states, and mixed programs correspond to superoperators from
mixed states to mixed states. In the supplemental report [Voichick et al. 2022a], we include further
discussion on the need for both of these in Qunity.

Judgments are parameterized by typing contexts, which are ordered lists of variable-type pairs, as
defined in Fig. 2. We say that a typing context (G1 : )1, . . . , G= : )=) is well-formed if all variables are
distinct; that is, if G 9 ≠ G: whenever 9 ≠ : . Concatenating two typing contexts Γ1 and Γ2 is written
Γ1, Γ2. Within the inference rules, there is an implicit assumption that contexts are well-formed (so
concatenation requires dom(Γ1) ∩ dom(Γ2) = ∅).

3.1 Pure Expression Typing

The pure expression typing judgment is written Γ ∥ Δ ⊢ 4 : ) ,1 indicating that expression 4 has
pure type ) with respect to classical context Γ and quantum context Δ. Variables in the classical
context are in a classical basis state, and are automatically uncomputed, while quantum context

1Whether a context is classical or quantum is based on its position in the typing judgment—left of ∥ is classical and right of
it is quantum. We write Γ (Δ, resp.) for classical (quantum, resp.) variables as a common but not universal convention.
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variables are consumed and may be in superposition. Operationally, classical data is still compiled
into qubits, but these qubits are only used as control wires for controlled operations, and they are
uncomputed when they go out of scope. Whenever ∅ ∥ ∅ ⊢ 4 : ) holds, the semantics corresponds
to a pure state in H() ), the Hilbert space assigned to ) .

Γ ∥ ∅ ⊢ () : ()
T-Unit

Γ, G : ), Γ′ ∥ ∅ ⊢ G : )
T-Cvar

G ∉ dom(Γ)

Γ ∥ G : ) ⊢ G : )
T-Qvar

Γ ∥ Δ,Δ0 ⊢ 40 : )0 Γ ∥ Δ,Δ1 ⊢ 41 : )1

Γ ∥ Δ,Δ0,Δ1 ⊢ (40,41) : )0 ⊗ )1
T-PurePair

Γ,Δ ⊩ 4 : ) ortho)
(
41, . . . , 4=

)
∅ ∥ Γ9 ⊢ 4 9 : ) for all 9

erases) ′ (G ; 4′
1
, . . . , 4′=) for all G ∈ dom(Δ) Γ, Γ′, Γ9 ∥ Δ,Δ

′ ⊢ 4′9 : )
′ for all 9

Γ, Γ′ ∥ Δ,Δ′ ⊢ ctrl 4



41 ↦→ 4′1

· · ·

4= ↦→ 4′=


) ) ′

: ) ′

T-Ctrl

⊢ 5 : ) ⇝ ) ′
Γ ∥ Δ ⊢ 4 : )

Γ ∥ Δ ⊢ 5 4 : ) ′
T-PureApp

Γ ∥ Δ ⊢ 4 : )

cg (Γ) ∥ cd (Δ) ⊢ 4 : )
T-PurePerm

Fig. 5. Pure expression typing rules

The pure expression typing rules are given in Figure 5. As is typical in quantum computing
languages, these rules are substructural [Walker 2004]. In particular, as in Qml [Altenkirch and
Grattage 2005], quantum variables are relevant, meaning they must be used at least once. This
invariant is evident from the T-QVar rule, which requires the quantum context to contain only the
variable G of interest, and the T-CVar and T-Unit rules, which require the quantum context to be
empty. Indeed, we can prove that Γ ∥ Δ ⊢ 4 : ) implies dom(Δ) ⊆ FV(4). On the other hand, the
rules do not enforce dom(Γ) ⊆ FV(4).
By enforcing variable relevance, Qunity’s type system can control what parts of a program are

allowed to discard information. Semantically, the non-use of a variable corresponds to a partial trace,
a quantum operation described by decoherence. Quantum control flow is ill-defined in the presence
of decoherence [Bădescu and Panangaden 2015], and decoherence is inherently irreversible, so we
use relevant types wherever computation must be reversible or subject to quantum control.
A quantum lambda calculus [Selinger and Valiron 2009] uses affine types for quantum data,

ensuring quantum variables are used at most once, while Proto-Quipper [Ross 2015] and Qwire

[Paykin et al. 2017] use linear types, requiring them to be used exactly once. This is done as
static enforcement of the no-cloning theorem [Wootters and Zurek 1982], which makes sense
in the qram computational model [Knill 1996]. However, Qunity’s aim (like Qml’s [Altenkirch
and Grattage 2005]) is to treat quantum computing as a generalization of classical computing.
Qunity fixes a particular standard computational basis and treats expression (G, G) as entangling
variable G when it is in superposition, essentially as a linear isometry U |0⟩ + V |1⟩ ↦→ U |00⟩ + V |11⟩.
The expression is deemed well typed by T-PurePair—notice that Δ appears when typing both
40 and 41, allowing duplication (“sharing”) of quantum resources across the pair. In contrast,
qram-based languages reject (G, G) to avoid confusion with the non-physical cloning function
U |0⟩ + V |1⟩ ↦→ (U |0⟩ + V |1⟩) ⊗ (U |0⟩ + V |1⟩).
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The difference between “sharing” and “cloning” affects only non-basis states. Sharing a qubit
U |0⟩ + V |1⟩ to a second qubit register produces the entangled state U |00⟩ + V |11⟩, while cloning
would produce the unentangled state (U |0⟩ + V |1⟩)(U |0⟩ + V |1⟩) = U2 |00⟩ + UV |01⟩ + UV |10⟩ +

V2 |11⟩. The former is basis-dependent and implementable in Qunity as “(G,G),” while the latter is
basis-independent and physically prohibited by the no-cloning theorem.

The T-PureApp rule applies a linear operator 5 to its argument 4 . The T-PurePerm rule exists to
allow for the usual structural rule of exchange, which is typically implicit. Here and throughout this
work, the functions c are list permutation functions, arbitrarily permuting the bindings within a
context. Making the exchange rule explicit allows compilation to be a direct function of the typing
judgment, with swap gates introduced at uses of the explicit exchange rule (Section 6.2).

Rule T-Ctrl types pattern matching and quantum control. We defer discussing it to Section 3.4,
after we have considered the other judgments.

3.2 Mixed Expression Typing

We write Δ ⊩ 4 : ) to indicate that expression 4 has mixed type ) under quantum context Δ;2 the
rules are in Figure 6. ∅ ⊩ 4 : ) implies 4’s semantics corresponds to a mixed state inH() ).

∅ ∥ Δ ⊢ 4 : )

Δ ⊩ 4 : )
T-Mix

Δ ⊩ 4 : )

c (Δ) ⊩ 4 : )
T-MixedPerm

Δ,Δ0 ⊩ 40 : )0 Δ,Δ1 ⊩ 41 : )1

Δ,Δ0,Δ1 ⊩ (40,41) : )0 ⊗ )1
T-MixedPair

Δ0 ⊩ 40 : ) Δ1 ⊩ 41 : )

Δ0,Δ1 ⊩ try 40 catch 41 : )
T-Try

⊢ 5 : ) ⇛ ) ′
Δ ⊩ 4 : )

Δ ⊩ 5 4 : ) ′
T-MixedApp

Fig. 6. Mixed expression typing rules

Rule T-Mix allows pure expressions to be typed as mixed. (One could equivalently treat pure
types as a subtype of mixed types.) Rules T-MixedPerm and T-MixedPair are analogous to the pure-
expression versions. Rule T-MixedApp allows applying a quantum channel 5 on an expression 4—
such an 5 may perform measurements, as discussed below. Rule T-Try allows exceptions occurring
in expression 40 to be caught and replaced by expression 41. Operationally, this is effectively
“measuring whether an error occurred” and thus try-catch expressions have no pure type; it also
cannot be done without perturbing the input data Δ0 and thus expression 41 is typed in a separate
context.

3.3 Program Typing

We write ⊢ 5 : � to indicate that program 5 has type � ; the rules are in Figure 7. Whenever
⊢ 5 : ) ⇝ ) ′ holds, the semantics corresponds to a linear operator mapping H() ) to H() ′).
Whenever ⊢ 5 : ) ⇛ ) ′ holds, the semantics corresponds to a superoperator mapping mixed states
inH() ) to mixed states inH() ′).

T-Gate types a single-qubit unitary gate, and T-Left and T-Right type sum introduction. These

are linear operations. T-PureAbs types a linear abstraction. In abstraction _4
)
↦−→ 4′, variables

introduced in 4 are relevant in 4′—they must be present in quantum context Δ used to type both 4

2We use the double-lined “⊩” symbol because this typing judgment can be used for measurements, and quantum circuit
diagrams conventionally use double-lined wires to carry measurement results.
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⊢ u3(A\,Aq,A_) : Bit⇝ Bit
T-Gate

⊢ left)0⊕)1 : )0 ⇝ )0 ⊕ )1
T-Left

⊢ right)0⊕)1 : )1 ⇝ )0 ⊕ )1
T-Right

∅ ∥ Δ ⊢ 4 : ) ∅ ∥ Δ ⊢ 4′ : ) ′

⊢ _4
)
↦−→ 4′ : ) ⇝ ) ′

T-PureAbs
∅ ∥ Δ ⊢ 4 : )

⊢ rphase)

{
4 ↦→ A

else ↦→ A ′

}
: ) ⇝ )

T-Rphase

⊢ 5 : ) ⇝ ) ′

⊢ 5 : ) ⇛ ) ′
T-Channel

∅ ∥ Δ,Δ0 ⊢ 4 : ) Δ ⊩ 4′ : ) ′

⊢ _4
)
↦−→ 4′ : ) ⇛ ) ′

T-MixedAbs

Fig. 7. Program typing rules

and 4′. (It is not hard to prove that Δ can always be uniquely determined.) T-MixedAbs is more
relaxed: variables in 4 can be contained in a context Δ0 which is not used to type 4′; such variables

are discarded in 4′, which implies measuring them. So the typing judgment ⊢ _G
Bit
↦−−→ 0 : Bit⇝ Bit

is invalid but the typing judgment ⊢ _G
Bit
↦−−→ 0 : Bit ⇛ Bit is valid. Rphase uses the expression 4

as a pattern for coherently inducing a phase, either 48A or 48A
′
depending on whether pattern 4 is

matched. T-Channel permits a linear operator to be treated as a superoperator.
Qunity programs are typed without context to help avoid scenarios where “entangling through

variable re-use” might be confusing. For example, the program _G
Bit
↦−−→ (G ⊲ (_~

Bit
↦−−→ G)) is ill-typed

in Qunity because the subprogram (_~
Bit
↦−−→ G) has a free variable G . This is not a major loss in

expressiveness because the rewritten program _G
Bit
↦−−→ let (G0,G1) =Bit⊗Bit (G,G) in G0 is valid,

with type Bit ⇛ Bit. This program measures a qubit by re-using the variable to share the qubit to
a second register and then discarding the entangled qubit, and the valid program makes this sharing
explicit. Qunity is designed so that pairing is the only way to perform this kind of entanglement,
by using a variable on both sides of the pair.

3.4 Typing �antum Control

Qunity allows for quantum control by generalizing pattern matching via ctrl, which is typed via
the T-Ctrl rule (Figure 5). The 4 9 s in the premises of this rule refer to the indexed expressions in
the conclusion. A “prime” symbol should be viewed as part of the variable name. The following is
the T-Ctrl rule for = = 2:

Γ,Δ ⊩ 4 : ) ortho)
(
41, 42

)
∅ ∥ Γ1 ⊢ 41 : ) ∅ ∥ Γ2 ⊢ 42 : )

erases) ′ (G ; 4′
1
, 4′

2
) for all G ∈ dom(Δ) Γ, Γ′, Γ1 ∥ Δ ⊢ 4′

1
: ) ′

Γ, Γ′, Γ2 ∥ Δ ⊢ 4′
2
: ) ′

Γ, Γ′ ∥ Δ ⊢ ctrl 4

{
41 ↦→ 4′1

42 ↦→ 4′2

}
) ) ′

: ) ′

To ensure realizable circuits, the type rule imposes several restrictions on patterns. First, both
pattern and body expressions 4 9 and 4′9 must be pure expressions; this means they cannot include
invocations of superoperators, which might involve measurements. Some recent work has tried
to generalize the definition of quantum control to a notion of “quantum alternation” that allows
measurements to be controlled. QuGcl [Ying 2016, Chapter 6] attempts this, but the resulting

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 32. Publication date: January 2023.



32:12 Finn Voichick, Liyi Li, Robert Rand, and Michael Hicks

erases) (G ; 41, . . . , 4=)

erases) (G ; 41, . . . , 4 9−1, 4 9 ⊲ gphase) (A), 4 9+1, . . . , 4=)
E-Gphase

erases) (G ; 41, . . . , 4 9−1, 4 9,1, . . . , 4 9,<, 4 9+1, . . . , 4=)

erases)
©«
G ; 41, . . . , 4 9−1, ctrl 4



4′1 ↦→ 4 9,1

· · ·

4′< ↦→ 4 9,<


) ′ )

, 4 9+1, . . . , 4=
ª®®¬

E-Ctrl

erases) (G ;G, G, . . . , G)
E-Var

erases)0 (G ; 40,1, . . . , 40,=)

erases)0⊗)1 (G ; (40,1,41,1), . . . , (40,=,41,=))
E-Pair0

erases)1 (G ; 41,1, . . . , 41,=)

erases)0⊗)1 (G ; (40,1,41,1), . . . , (40,=,41,=))
E-Pair1

Fig. 8. Erasure inference rules

denotational semantics is non-compositional. Bădescu and Panangaden [Bădescu and Panangaden
2015] shed more light on the problems with quantum alternation, proving that quantum alternation
is not monotone with respect to the Löwner order [Ying 2016, p. 17] and concluding that “quantum
alternation is a fantasy arising from programming language semantics rather than from physics.”
For ctrl semantics to be physically meaningful, T-Ctrl depends on two additional judgments

applied to the body expressions—“ortho” for the left-hand-side (defined further below), and “erases”
for the right-hand-side (defined in Figure 8). The ortho judgment ensures that the left-hand-side
patterns 4 9 are purely classical and non-overlapping. The erases judgment (defined using gphase

syntax from Figure 4) ensures that all of the right-hand-side patterns 4′9 use the variables from
4 in a consistent way, and its name comes from the way this judgment is used by the compiler
to coherently “erase” these variables. The contexts Γ9 are the primary motivation that the typing
relation includes classical contexts Γ at all. Semantically, the variables they represent are purely
classical; operationally, the information on these registers is used without being “consumed,” under
the assumption that it will be uncomputed. When typing the expressions 4 9 , these contexts Γ9
appear in the “quantum” part of the context so that the type system can enforce variable relevance,
but the restrictions placed by the ortho judgment ensure that these variables are still practically
classical.
The orthogonality judgment is defined in terms of a “spanning” judgment defined in the sup-

plemental report [Voichick et al. 2022a]. This judgment, written spanning)
(
41, . . . , 4=

)
and largely

inspired by Spm’s [Sabry et al. 2018] “orthogonal decomposition” judgment, denotes that the set of
expressions {41, . . . , 4=} is a spanning set for type ) . This judgment enforces that the expressions
form an exhaustive set of patterns for the type ) , which in our quantum setting semantically
corresponds to a set of states that span the Hilbert space corresponding to ) .
We write ortho)

(
41, . . . , 4=

)
to denote that the set of expressions {41, . . . , 4=} is orthogonal. An

orthogonal set of expressions is simply a subset of some spanning set. That is, orthogonality
judgments can be defined by the following inference rule alone:

spanning)
(
4′1, . . . , 4

′
<

)
[41, . . . , 4=] is a subsequence of [4′1, . . . , 4

′
<]

ortho)
(
41, . . . , 4=

)
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It is not hard to prove that orthogonality holds for a set of expressions regardless of the order they
appear in the judgment (e.g., ortho)

(
41, 42

)
iff ortho)

(
42, 41

)
).

4 SEMANTICS

In this section, we define Qunity’s denotational semantics in terms of linear operators (for pure
expressions) and superoperators (for mixed expressions). These definitions are designed to naturally
generalize from a classical semantics defined on a classical sublanguage of Qunity. After presenting
the semantics, we present some metatheoretical results, most notably that well-typed Qunity
programs are well-defined according to the semantics.

4.1 Classical Sublanguage Semantics

Qunity’s semantics may be more intuitive if we first restrict ourselves to a classical sublanguage.

Definition 4.1 (classical sublanguage). Qunity’s classical sublanguage is defined by removing the
u3 and rphase constructs from the language, producing the following:

4 ....= () | G | (4,4) | ctrl 4



4 ↦→ 4

· · ·

4 ↦→ 4


) )

| try 4 catch 4 | 5 4

5 ....= left)⊕) | right)⊕) | _4
)
↦−→ 4

We can define a classical denotational semantics for this sublanguage using partial functions
over values and valuations.

Definition 4.2 (value and valuation). For any type) , we writeV() ) to denote the set of expressions
that are values of that type.

V(Void) ..= ∅

V(()) ..= {()}

V()0 ⊕ )1)
..= {left)0⊕)1 E0 | E0 ∈ V()0)} ∪ {right)0⊕)1 E1 | E1 ∈ V()1)}

V()0 ⊗ )1)
..= {(E0,E1) | E0 ∈ V()0), E1 ∈ V()1)}

A valuation, written f or g , is a list of variable-value pairs:

f ....= ∅ | f, G ↦→ E

Like with Γ and Δ, we will generally use the letter f for classical data and g for quantum data, but
the two are interchangeable. Each typing context has a corresponding set of valuations, defined as
follows:

V(G1 : )1, . . . , G= : )=)
..= {G1 ↦→ E1, . . . , G= ↦→ E= | E1 ∈ V()1), . . . , E= ∈ V()=)}

Like with typing contexts, we use a comma to denote the concatenation of valuations, sometimes
mixing valuations with explicit variable-value pairs. For example, if g0 ∈ V(Δ0) and E ∈ V() ) and
g1 ∈ V(Δ1), then g0, G ↦→ E, g1 ∈ V(Δ0, G : ),Δ1).

In the supplemental report [Voichick et al. 2022a], we define a classical denotational semantics
for this sublanguage. The semantics of an expression is a partial function from valuations to values,
while the semantics of a program is a partial function from values to values. Given a purely-typed
expression or program, this partial function will be injective. Stripped of quantum constructs, Qunity
thus becomes a (classical) reversible programming language comparable to other programming
languages for reversible computing.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 32. Publication date: January 2023.



32:14 Finn Voichick, Liyi Li, Robert Rand, and Michael Hicks

Theorem 4.3 (expressiveness of classical sublanguage). Any combinator written in the

reversible language Π [James and Sabry 2012] can be translated into a pure program in Qunity’s

classical sublanguage, and any arrow computation written in the arrow metalanguageMLΠ [James

and Sabry 2012] can be translated into a mixed program in Qunity’s classical sublanguage. These

translations preserve types and semantics.

We prove Theorem 4.3 in the supplemental report. We choose the language MLΠ because its
typing and semantics are directly comparable with Qunity’s, and because a translation from a more
typical let-based language to MLΠ already exists.
Qunity’s quantum semantics, defined in the next section, can be viewed as a generalization of

the classical sublanguage semantics. The advantage of this approach is that one does not have to
explicitly convert between separate quantum and classical languages, as any program written in
the classical sublanguage can be applied to quantum data.

Where the classical semantics uses finite sets for input and output, the quantum semantics uses
finite-dimensional vector spaces. As we state more precisely and prove in the supplemental report,
the classical semantics is simply the quantum semantics restricted to the standard computational
basis.

Theorem 4.4 (generalization of classical semantics). The classical semantics of any classical

Qunity program coincides with its quantum semantics applied to values treated like basis states.

4.2 Full Semantics

Definition 4.5. We associate Hilbert spaces with types and contexts as follows:

H(Void) ..= {0}

H (()) ..= C

H()0 ⊕ )1)
..= H()0) ⊕ H ()1)

H ()0 ⊗ )1)
..= H()0) ⊗ H ()1)

H (G1 : )1, . . . , G= : )=)
..= H()1) ⊗ · · · ⊗ H ()=)

On the right-hand side above, we use the symbols ⊕ and ⊗ to refer to the usual direct sum and
tensor product of Hilbert spaces [Roman 2008]. For those unfamiliar with the direct sum, we give
an overview of its important properties in the supplemental report. Each Hilbert space H() ) has
a canonical orthonormal basis {|E⟩ : E ∈ V() )}, where the meaning of |E⟩ ∈ H () ) is defined as
follows:

|()⟩ ..= 1��left)0⊕)1 E0〉 ..= |E0⟩ ⊕ 0��right)0⊕)1 E1〉 ..= 0 ⊕ |E1⟩

|(E0,E1)⟩
..= |E0⟩ ⊗ |E1⟩

We can do the same for typing contexts Δ, constructing an orthonormal basis {|g⟩ : g ∈ V(Δ)} ⊂

H (Δ) as follows:

|G1 ↦→ E1, . . . , G= ↦→ E=⟩
..= |E1⟩ ⊗ · · · ⊗ |E=⟩

Using notation from linear algebra [Axler 2015], we write L(H0,H1) to denote the space of
linear operators fromH0 to H1, with L(H ′) ..= L(H ′,H ′).
Qunity’s semantics is defined by four mutually recursive functions of a valid typing judgment:
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Jf : Γ ∥ ∅ ⊢ () : ()K |∅⟩ ..= |()⟩

Jf : Γ ∥ ∅ ⊢ G : ) K |∅⟩ ..= |f (G)⟩

Jf : Γ ∥ G : ) ⊢ G : ) K |G ↦→ E⟩ ..= |E⟩

Jf : Γ ∥ Δ,Δ0,Δ1 ⊢ (40,41) : )0 ⊗ )1K |g, g0, g1⟩ ..= Jf : Γ ∥ Δ,Δ0 ⊢ 40 : )0K |g, g0⟩

⊗ Jf : Γ ∥ Δ,Δ1 ⊢ 41 : )1K |g, g1⟩

Jf, f ′ : Γ, Γ′ ∥ Δ,Δ′ ⊢ ctrl 4



41 ↦→ 4′1

· · ·

4= ↦→ 4′=


) ) ′

: ) ′K |g, g ′⟩ ..=

∑
E∈V() )

⟨E | JΓ,Δ ⊩ 4 : ) K ( |f, g⟩⟨f, g |) |E⟩

·

=∑
9=1

∑
f 9 ∈V(Γ9 )

〈
f 9

�� J∅ : ∅ ∥ Γ9 ⊢ 4 9 : ) K† |E⟩

· Jf, f 9 : Γ, Γ9 ∥ Δ,Δ
′ ⊢ 4′9 : )

′K |g, g ′⟩

Jf : Γ ∥ Δ ⊢ 5 4 : ) K |g⟩ ..= J⊢ 5 : ) ⇝ ) ′KJf : Γ ∥ Δ ⊢ 4 : ) K |g⟩

Jcg (f) : cg (Γ) ∥ cd (Δ) ⊢ 4 : ) K |cd (g)⟩ ..= Jf : Γ ∥ Δ ⊢ 4 : ) K |g⟩

Fig. 9. Pure expression semantics

JΔ,Δ0 ⊩ 4 : ) K
(
|g, g0⟩⟨g, g

′
0 |
)
..= J∅ : ∅ ∥ Δ ⊢ 4 : ) K|g⟩⟨g ′ |J∅ : ∅ ∥ Δ ⊢ 4 : ) K†

JΔ,Δ0 ⊩ 4 : ) K
(
|g, g0⟩⟨g

′, g ′0 |
)
..= 0 if (∅ : ∅ ∥ Δ ⊢ 4 : ) ) holds and g ≠ g ′

JΔ,Δ0,Δ1 ⊩ (40,41) : )0 ⊗ )1K
(
|g, g0, g1⟩⟨g

′, g ′0, g
′
1 |
)
..= JΔ,Δ0 ⊩ 40 : )0K

(
|g, g0⟩⟨g

′, g ′0 |
)

⊗ JΔ,Δ1 ⊩ 41 : )1K
(
|g, g1⟩⟨g

′, g ′1 |
)

JΔ0,Δ1 ⊩ try 40 catch 41 : ) K
(
|g0, g1⟩⟨g

′
0, g

′
1 |
)
..= JΔ0 ⊩ 40 : ) K

(
|g0⟩⟨g

′
0 |
)

+ (1 − tr(JΔ0 ⊩ 40 : ) K
(
|g0⟩⟨g

′
0 |
)
))

· JΔ1 ⊩ 41 : ) K
(
|g1⟩⟨g

′
1 |
)

JΔ ⊩ 5 4 : ) ′K( |g⟩⟨g ′ |) ..= J⊢ 5 : ) ⇛ ) ′K
(
JΔ ⊩ 4 : ) K( |g⟩⟨g ′ |)

)
Jc (Δ) ⊩ 4 : ) K( |c (g)⟩⟨c (g ′) |) ..= JΔ ⊩ 4 : ) K( |c (g)⟩⟨c (g ′) |)

Fig. 10. Mixed expression semantics

• If Γ ∥ Δ ⊢ 4 : ) and f ∈ V(Γ), then Jf : Γ ∥ Δ ⊢ 4 : ) K ∈ L(H (Δ),H() )) defines
the pure semantics of expression 4 . We give the denotation in Figure 9. The f is a sort of
“classical data,” so the pure expression semantics may be viewed as a two-parameter function
V(Γ) × H (Δ) → H() ), linear in its second argument.

• If Δ ⊩ 4 : ) , then JΔ ⊩ 4 : ) K ∈ L(L(H (Δ)),L(H () ))) defines the mixed semantics of
expression 4 . We give the denotation in Figure 10.

• If ⊢ 5 : ) ⇝ ) ′, then J⊢ 5 : ) ⇝ ) ′K ∈ L(H () ),H() ′)) defines the pure semantics of
program 5 . We give the denotation in Figure 11.

• If ⊢ 5 : ) ⇛ ) ′, then J⊢ 5 : ) ⇛ ) ′K ∈ L(L(H () )),L(H () ′))) defines the mixed semantics
of program 5 . We give the denotation in Figure 12.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 32. Publication date: January 2023.



32:16 Finn Voichick, Liyi Li, Robert Rand, and Michael Hicks

J⊢ u3(A\,Aq,A_) : Bit⇝ BitK |0⟩ ..= cos(A\/2) |0⟩ + 48Aq sin(A\/2) |1⟩

J⊢ u3(A\,Aq,A_) : Bit⇝ BitK |1⟩ ..= −48A_ sin(A\/2) |0⟩ + 48 (Aq+A_ ) cos(A\/2) |1⟩

J⊢ left)0⊕)1 : )0 ⇝ )0 ⊕ )1K |E⟩ ..=
��left)0⊕)1 E〉

J⊢ right)0⊕)1 : )1 ⇝ )0 ⊕ )1K |E⟩ ..=
��right)0⊕)1 E〉

J⊢ _4
)
↦−→ 4′ : ) ⇝ ) ′K |E⟩ ..= J∅ : ∅ ∥ Δ ⊢ 4′ : ) ′KJ∅ : ∅ ∥ Δ ⊢ 4 : ) K† |E⟩

J⊢ rphase)

{
4 ↦→ A

else ↦→ A ′

}
: ) ⇝ ) K |E⟩ ..= 48A J∅ ∥ Δ ⊢ 4 : ) KJ∅ ∥ Δ ⊢ 4 : ) K† |E⟩

+ 48A
′
(
I − J∅ ∥ Δ ⊢ 4 : ) KJ∅ ∥ Δ ⊢ 4 : ) K†

)
|E⟩

Fig. 11. Pure program semantics

J⊢ 5 : ) ⇛ ) ′K( |E⟩⟨E ′ |) ..= J⊢ 5 : ) ⇝ ) ′K|E⟩⟨E ′ |J⊢ 5 : ) ⇝ ) ′K†

J⊩ _4
)
↦−→ 4′ : ) ⇛ ) ′K( |E⟩⟨E ′ |) ..=

JΔ ⊩ 4′ : ) ′K
(
trΔ0

(
J∅ : ∅ ∥ Δ,Δ0 ⊢ 4 : ) K† |E⟩⟨E ′ |J∅ : ∅ ∥ Δ,Δ0 ⊢ 4 : ) K

))

Fig. 12. Mixed program semantics

We define Qunity semantics on the standard computational basis, but these should be understood
to be linear operators after extending by linearity. This semantics is compositional by construction.
For example, the pure semantics of (40,41) can be computed in terms of the semantics of 40 and 41.
The operator for each subexpression is applied to the relevant part of the input basis state, and a
tensor product of the resulting states defines (40,41).
The most complicated definition is the one for ctrl, which uses a superoperator to construct

an operator. The definition uses ⟨E | JΓ,Δ ⊩ 4 : ) K (|f, g⟩⟨f, g |) |E⟩, the probability that expression
4 outputs E given input (f, g), as seen by a classical observer. This probability from the mixed
semantics is then used directly as an amplitude in the resulting pure semantics. Note that this
introduces an unavoidable source of error whenever probabilities between 0 and 1 are involved
because there is no square root involved—the resulting semantics will be norm-decreasing even if
the original superoperator was trace-preserving.

The definition for try-catch uses (1− tr(JΔ0 ⊩ 40 : ) K
(
|g0⟩⟨g

′
0
|
)
)), the probability that 40 throws

an exception. If 40 succeeds, then its results are used, but otherwise, the results from 41 are used.

4.3 Metatheory

We are defining semantics as recursive functions on typing judgments rather than on programs
and expressions directly. Qunity’s typing relation is not syntax-directed, which means that there
are multiple ways to type—and give semantics to—the same expression. Thus, we must prove that
the semantics is truly a function, i.e., that the different proofs of the same judgment lead to the
same semantic denotation.
As an example, note the two deduction trees in Figure 13 prove the same typing judgment, so

they should give rise to the same semantics. The semantics takes a tensor product of two state
vectors for T-PurePair, but a tensor product of two density operators for T-MixedPair. This is not
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∅ ∥ Γ0 ⊢ 40 : )0 ∅ ∥ Γ1 ⊢ 41 : )1

∅ ∥ Γ0, Γ1 ⊢ (40,41) : )0 ⊗ )1
T-PurePair

Γ0, Γ1 ⊩ (40,41) : )0 ⊗ )1
T-Mix

∅ ∥ Γ0 ⊢ 40 : )0

Γ0 ⊩ 40 : )0
T-Mix

∅ ∥ Γ1 ⊢ 41 : )1

Γ1 ⊩ 41 : )1
T-Mix

Γ0, Γ1 ⊩ (40,41) : )0 ⊗ )1
T-MixedPair

Fig. 13. Two proofs of the same typing judgment

a problem because a tensor product can equivalently be taken before or after the conversion to
density operators: ( |k ⟩ ⊗ |q⟩)(⟨k | ⊗ ⟨q |) = |k ⟩⟨k | ⊗ |q⟩⟨q | for any states |k ⟩ , |q⟩. We prove that
this kind of equivalence always holds.

Theorem 4.6 (well-defined semantics). Qunity has a well-defined semantics:

• Whenever (Γ ∥ Δ ⊢ 4 : ) ) is valid and f ∈ V(Γ), the denotation Jf : Γ ∥ Δ ⊢ 4 : ) K is uniquely
defined.

• Whenever (Δ ⊩ 4 : ) ) is valid, the denotation JΔ ⊩ 4 : ) K is uniquely defined.

• Whenever (⊢ 5 : ) ⇝ ) ′) is valid, the denotation J⊢ 5 : ) ⇝ ) ′K is uniquely defined.

• Whenever (⊢ 5 : ) ⇛ ) ′) is valid, the denotation J⊢ 5 : ) ⇛ ) ′K is uniquely defined.

Whenever a typing judgment has more than one proof of validity, the derived semantics is independent

of the proof.

The proof of Theorem 4.6, given in the supplemental report, was largely inspired by the proof of
Newman’s lemma [Huet 1980; Newman 1942], a standard tool for proving global confluence from
local confluence when using (operational) reduction semantics. Qunity’s semantics is denotational
rather than operational, but one can imagine the operational procedure of evaluating the denota-
tional semantics by repeatedly rewriting denotations in terms of the denotations of subexpressions.
In this view, we have a terminating sequence of rewrite rules, and global confluence is exactly
what is needed to prove the semantics well-defined. We do not use Newman’s lemma directly, but
the induction strategy is essentially the same, and this allows us to focus on particular cases of
equivalence like the one in Figure 13, which are easy to verify algebraically.
Not all pure Qunity programs have a norm-preserving (isometric) semantics. Rather, programs

that may throw an exception are norm-decreasing instead. We can characterize our semantics in
terms of Kraus operators.

Definition 4.7 (Kraus operator). A Kraus operator is a linear operator � such that �†� ⊑ � , where
“⊑” denotes the Löwner order [Ying 2016, p. 17].

Note that Kraus operators are typically defined as sets of operators � whose sum satisfies the
property above. For our purposes, a single operator will suffice.

Theorem 4.8. Jf : Γ ∥ Δ ⊢ 4 : ) K and J⊢ 5 : ) ⇝ ) ′K are Kraus operators whenever well-defined.
JΔ ⊩ 4 : ) K and J⊢ 5 : ) ⇛ ) ′K are completely positive, trace non-increasing superoperators whenever

well-defined.

We do not prove this theorem directly, but it is a direct consequence of the correctness of our
compilation procedure discussed in Section 6.

We can also be more precise about the semantics of the orthogonality and spanning judgments.
In the absence of variables, the orthogonality judgment describes a set of orthogonal basis states,
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and the spanning judgment describes a spanning set of orthogonal basis states. With variables, the
picture is a bit more complicated, because we are dealing with projectors onto orthogonal subspaces
rather than orthogonal states. An algebraic description of these semantics is given by Lemmas 4.10
and 4.9.

Lemma 4.9 (spanning semantics). Suppose ∅ ∥ Δ 9 ⊢ 4 9 : ) for all 9 ∈ {1, . . . , =} and suppose

spanning)
(
41, . . . , 4=

)
is true. Then

∑=
9=1J∅ ∥ Δ 9 ⊢ 4 9 : ) KJ∅ ∥ Δ 9 ⊢ 4 9 : ) K† = I.

Lemma 4.10 (orthogonality semantics). Suppose ∅ ∥ Δ 9 ⊢ 4 9 : ) for all 9 ∈ {1, . . . , =} and

suppose ortho)
(
41, . . . , 4=

)
is true. Then ⟨E | J∅∥Δ 9 ⊢ 4 9 : ) K

��g 9 〉 ∈ {0, 1} for all g 9 ∈ V(Δ 9 ), E ∈ V() ),

and
∑=

9=1J∅ ∥ Δ 9 ⊢ 4 9 : ) KJ∅ ∥ Δ 9 ⊢ 4 9 : ) K† ⊑ I.

Finally, Qunity’s semantics uses norm-decreasing operators and trace-decreasing superoperators,
which can be interpreted operationally as a sort of “exception.” In the supplemental report, we
present an additional judgment “iso” that can be used to statically determine whether a program
belongs to a checkable class of exception-free programs.

5 EXAMPLES

We have already shown two examples of programs we can write in Qunity: Deutsch’s algorithm
(Section 1.1) and Grover’s algorithm (end of Section 2). This section presents twomore—the quantum
Fourier transform and the quantum walk—aiming to further illustrate Qunity’s expressiveness.
The quantum walk depends on specialized erasure, a technique that reverses ctrl expressions to
implement a general form of reversible pattern-matching. We give a third example—the Deutsch-
Jozsa algorithm—in the supplemental report.

5.1 �antum Fourier Transform

In Figure 14, we use a presentation of the quantum Fourier transform that has a symmetric circuit
diagram [Griffiths and Niu 1996]. This version uses a two-qubit “coupling” gate that swaps two
qubits and coherently induces a particular global phase conditional on both qubits being |1⟩.

5.2 Specialized Erasure

Quantum control—that is, programming with conditionals while maintaining quantum coherence—
is a common feature of quantum algorithms, and Qunity’s ctrl construct can be a powerful tool for
implementing this pattern. However, the “erases” requirement of the T-Ctrl typing rule can be a
frustrating limitation on practical quantum control. It effectively requires that any part of the input
used for quantum control (the Δ context in the T-Ctrl typing rule) must be present in the output
as well. We show here how programmers can get around this limitation with a general approach
for “erasing” controlled data in a more customizable way, without adding any new primitives to
the Qunity language.
The basic approach is fairly simple, and it is already used in the implementation of existing

quantum algorithms [Childs and van Dam 2010, p. 8]. Suppose one has two Hilbert spaces H
and H ′ with orthonormal sets {|1⟩ , . . . , |=⟩} ⊂ H and {|1′⟩ , . . . , |=′⟩} ⊂ H ′, and one would
like to implement the operator � ..=

∑=
9=1 | 9

′⟩⟨ 9 | ∈ L(H ,H ′). If one can implement operators
�1

..=
∑=

9=1 | 9, 9
′⟩⟨ 9 | ∈ L(H ,H ⊗ H ′) and �2

..=
∑=

9=1 | 9, 9
′⟩⟨ 9 ′ | ∈ L(H ′,H ⊗ H ′), then one can

implement � = �†
2
�1. This pattern can be useful in Qunity, where the operators �1 and �2 can

be easy to implement using a ctrl expression, but the erases judgment prevents � from being
implemented more directly. The �†

2
operator serves as a sort of “specialized erasure,” erasing the

input state | 9⟩.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 32. Publication date: January 2023.



�nity 32:19

and ..= _G
Bit⊗Bit
↦−−−−−−→

ctrl G




(0,0) ↦→ (G,0)

(0,1) ↦→ (G,0)

(1,0) ↦→ (G,0)

(1,1) ↦→ (G,1)


Bit⊗Bit (Bit⊗Bit)⊗Bit

⊲ snd(Bit⊗Bit)⊗Bit

couple(:) ..= _(G0,G1)
Bit⊗Bit
↦−−−−−−→

ctrl and(G0,G1)

{
0 ↦→ (G1,G0)

1 ↦→ (G1,G0) ⊲ gphaseBit⊗Bit(2c / 2k)

}
Bit Bit⊗Bit

rotations(0) ..= _()
Bit⊗0

↦−−−−→ ()

rotations(1) ..= _(G,())
Bit⊗1

↦−−−−→ (had G,())

rotations(= + 2) ..= _(G0,G)
Bit⊗(=+2)

↦−−−−−−−→

©
«
let (G0,(~

′
0,~)) =Bit⊗(=+2) (G0,G ⊲ rotations(= + 1)) in

let ((~0,~1),~) =(Bit⊗Bit)⊗Bit⊗=((G0,~
′
0) ⊲ couple(= + 2),~) in

(~0,(~1,~))

ª®®¬
qft(0) ..= _()

Bit⊗0

↦−−−−→ ()

qft(= + 1) ..= _G
Bit⊗(=+1)

↦−−−−−−−→ let (G0,G
′) =Bit⊗=G ⊲ rotations(= + 1) in (G0,G

′
⊲ qft(=))

Fig. 14. The quantum Fourier transform implemented in �nity

match



41 ↦→ 4′1

· · ·

4= ↦→ 4′=


) ) ′

..=_G
)
↦−→ ctrl G



41 ↦→ (G,4′1)

· · ·

4= ↦→ (G,4′=)


) )⊗) ′

⊲ _
©«
ctrl G ′



4′1 ↦→ (41,G

′)

· · ·

4′= ↦→ (41,G
′)


) ′ )⊗) ′

ª®®¬
)⊗) ′

↦−−−−→ G ′

Fig. 15. Reversible pa�ern matching via specialized erasure

This pattern can be used to implement a “match” program, shown in Figure 15. The typing and
semantics of this program are very similar to the symmetric pattern matching language [Sabry
et al. 2018]. In particular, the typing rule and semantics in Figure 16 can be inferred.

As another example, Figure 17 shows how one can use this pattern to implement the direct sum of
linear operators, defined so that J⊢ 50⊕ 51 : )0⊕)1 ⇝ ) ′

0
⊕) ′

1
K = J⊢ 50 : )0 ⇝ ) ′

0
K⊕ J⊢ 51 : )1 ⇝ ) ′

1
K.

These examples are admittedly fairly lengthy, and would not lead to an efficient implementation
if compiled without optimizations using the compilation procedure described in Section 6. Our
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ortho)
(
41, . . . , 4=

)
∅ ∥ Δ 9 ⊢ 4 9 : ) for all 9

ortho) ′

(
4′1, . . . , 4

′
=

)
∅ ∥ Δ 9 ⊢ 4

′
9 : )

′ for all 9

⊢ match



41 ↦→ 4′1

· · ·

4= ↦→ 4′=


) ) ′

: ) ⇝ ) ′

J⊢ match



41 ↦→ 4′1

· · ·

4= ↦→ 4′=


) ) ′

: ) ⇝ ) ′K =
=∑
9=1

J∅ ∥ Δ 9 ⊢ 4
′
9 : )

′KJ∅ ∥ Δ 9 ⊢ 4 9 : ) K†

Fig. 16. Typing and semantics for the match construct

50 ⊕ 51
..=_G

)0⊕)1
↦−−−−→ ctrl G

{
left)0⊕)1 G0 ↦→ (G,left) ′

0
⊕) ′

1
(50 G0) )

right)0⊕)1 G1 ↦→ (G,right) ′
0
⊕) ′

1
(51 G1) )

}
)0⊕)1 ()0⊕)1 )⊗() ′

0
⊕) ′

1
)

⊲ _
©«
ctrl G ′




left) ′
0
⊕) ′

1
G ′0 ↦→ (left)0⊕)1

(
5 †
0
G ′0

)
,G ′)

right) ′
0
⊕) ′

1
G ′1 ↦→ (right)0⊕)1

(
5 †
1
G ′1

)
,G ′)



ª®®¬

()0⊕)1 )⊗() ′
0
⊕) ′

1
)

↦−−−−−−−−−−−−−→ G ′

Fig. 17. A �nity implementation of the direct sum of linear operators

purpose here is to demonstrate the expressiveness of Qunity despite its small number of language
primitives, but additional language primitives may make efficient compilation easier.

5.3 �antum Walk

We use Qunity to implement a quantum walk algorithm for boolean formula evaluation [Ambainis
et al. 2010; Childs et al. 2007]. The simplest version of this algorithm treats a nand formula as
a balanced binary tree where each leaf corresponds to a variable in the formula and each vertex
corresponds to a nand application. Given black-box oracle access to a function 5 : Variable →

{0, 1}, the task is to evaluate the formula.
This algorithm performs a quantum walk, repeatedly applying a diffusion step and a walk step

to two quantum registers: a vertex index and a qutrit “three-sided coin.” The diffusion step uses
coherent control to apply a different operator to the coin depending on the vertex index. If the vertex
index is a leaf E , then the oracle is used to induce a conditional phase flip of (−1) 5 (E) . Otherwise,
a reflection operator (2|u⟩⟨u| − � ) is applied to the coin register, where |u⟩ is a coin state whose
value depends on whether the vertex index is one of two special root nodes. The walk step then
performs a coherent permutation on the two registers, “walking” the vertex index to the direction
specified by the coin and setting the coin to be the direction traveled from.

This algorithm presents some interesting challenges for implementation, and Quipper’s [Green
et al. 2013] implementation of this algorithm is quite long.3 One challenge is the representation of
the vertex index. The traversed graph is a tree, so a convenient representation is the path taken to
get to this vertex from the root of the tree, a list like [vleft, vright, . . . ] indicating the sequence
of child directions. The problem is that this list has an unknown length, so one cannot simply

3See Quipper.Algorithms.BF.BooleanFormula for reference.
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use an array of qubits where each qubit corresponds to a direction taken. Quipper has no sum
types, and every (quantum) Quipper type is effectively a fixed-length array of qubits, so Quipper’s
implementation must directly manipulate an encoding of variable-length lists into bitstrings, which
requires developers to work at a lower level of abstraction than they would prefer. Qunity’s sum
types make it convenient to coherently manipulate variable-length lists by managing the qubit
encoding automatically.
First, we must define the types and values used in this program in terms of existing ones. We

use a recursively-defined Vertex type to represent a vertex in the tree as a variable-length list.
This type and others are defined in Figure 18 in terms of Qunity’s base types. Here, the parameter
= is the height of the tree, a bound on the depth. A Vertex=+1 is thus either empty or a Vertex=
with an additional Child appended and can store a superposition of lists of different lengths. The
algorithm augments the tree with two special vertices at the root of the tree, root'= and root=+1,
both of type Vertex=+2, where the “+2” comes from the extra depth incurred by these vertices. The
leaves of the traversed tree are those where the path from the root is maximal, so we can use the
fixed-length Leaf type to describe leaves separately from arbitrary vertices.

Child ..= Bit

vleft ..= 0

vright ..= 1

Coin ..= Maybe (Child)

cdown ..= nothingChild

cleft ..= justChildvleft

cright ..= justChildvright

Vertex0
..= Void

Vertex=+1
..= () ⊕ (Vertex= ⊗ Child)

root=
..= leftVertex=+1()

(4 ↩→= 40)
..= rightVertex=+1(4,40)

root'=
..= root= ↩→=+1 vleft

Leaf=
..= Child⊗=

Fig. 18. Types and values used in the quantum walk algorithm (also see Fig. 4)

Figure 19 defines some additional programs used in this algorithm. The asleaf program
is essentially a projector onto the subspace of vertices spanned by leaves; asleaf= has type
(Vertex=+2 ⇝ Leaf=). This program converts the variable-length Vertex type into the fixed-
length Leaf type, terminating exceptionally if the length is insufficient. The downcast= program
has type (Vertex=+1 ⇝ Vertex=), and is used to convert a vertex to a type with a smaller maxi-
mum length, terminating exceptionally if the length is maximal. This program, defined using the
specialized erasure technique described in the previous section, is used by the leftchild= and
rightchild= programs, both of type (Vertex= ⇝ Vertex=), which reversibly “step” a vertex to a
child in the tree.

We implement the diffusion step of the quantumwalk in Figure 20. This implementation resembles
the original algorithm description [Childs et al. 2007, p. 4] much more closely than Quipper’s
implementation, which involves more complicated qubit encodings and explicit uncomputation.
The diffusion program has the following type:

⊢ 5 : Leaf= ⇛ Bit

⊢ diffusion= (5 ) : Coin ⊗ Vertex=+2 ⇝ Coin ⊗ Vertex=+2

We implement the walk step in Figure 21. This program must update both the vertex and the
coin while maintaining quantum coherence. To make this work, we use a program nextcoin= of
type (Coin ⊗ Vertex=+1 ⇝ (Coin ⊗ Vertex=+1) ⊗ Coin) to both compute the updated coin and
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asleaf0
..= _ root'0

Vertex2
↦−−−−−−→ ()

asleaf=+1
..= _(G ↩→=+2 G0)

Vertex=+3
↦−−−−−−−→ (G0,G ⊲ asleaf=)

downcast0
..= _E

Vertex1
↦−−−−−−→ ctrl E {}Vertex1 Vertex0

downcast=+1
..= _E

Vertex=+2
↦−−−−−−−→

ctrl E

{
root=+1 ↦→ (E,root=)

E ′ ↩→=+1 G ↦→ (E,downcast=E
′
↩→= G)

}
Vertex=+2 Vertex=+2⊗Vertex=+1

⊲ _ ctrl E

{
root= ↦→ (root=+1,E)

E ′ ↩→= G ↦→ (downcast=
†E ′ ↩→=+1 G,E)

}
Vertex=+1 Vertex=+2⊗Vertex=+1

Vertex=+2⊗Vertex=+1
↦−−−−−−−−−−−−−−−−→ E

leftchild=
..= _E

Vertex=
↦−−−−−−→ downcast= (E ↩→= vleft)

rightchild=
..= _E

Vertex=
↦−−−−−−→ downcast= (E ↩→= vright)

Fig. 19. Programs and expressions used in the quantum walk implementation

diffusion= (5 )
..=

_(2,E)
Coin⊗Vertex=+2
↦−−−−−−−−−−−−→

ctrl E


E ′ ↩→= G ↩→=+1 G
′ ↦→ ctrl

(
try justLeaf(=) ((E

′
↩→= G ↩→=+1 G

′) ⊲asleaf=)

catch nothingLeaf(=)

)


nothingLeaf(=) ↦→ (2 ⊲ reflectCoin (u),E)

justLeaf(=) ℓ ↦→ ctrl (5 ℓ)

{
0 ↦→ (2,E)

1 ↦→ (2,E) ⊲ gphase(c)

}
root'= ↦→ (2 ⊲ reflectCoin (u'=),E)

root=+1 ↦→ (2,E)




Fig. 20. The diffusion step of the boolean formula algorithm. For brevity, we omit some type annotations and
the implementation of the expressions u and u'= . See the Coq implementation [Voichick et al. 2022b] for
details.

to uncompute the previous coin. The walk program walk= then has type (Coin ⊗ Vertex=+1 ⇝

Coin ⊗ Vertex=+1).

6 COMPILATION

We have developed an algorithm for compiling Qunity to a low-level qubit circuit language such as
OpenQasm [Cross et al. 2021]. This section provides an overview of the algorithm; the details are
given in the supplemental report [Voichick et al. 2022a].
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nextcoin=
..= _G ↦→ ctrl G




(cdown,E ↩→= vleft) ↦→ (G,cleft)

(cdown,E ↩→= vright) ↦→ (G,cleft)

(cright,E) ↦→ (G,cdown)

(cleft,E) ↦→ (G,cdown)


Coin⊗Vertex=+1 (Coin⊗Vertex=+1 )⊗Coin

walk=
..= _G

Coin⊗Vertex=+1
↦−−−−−−−−−−−−→

nextcoin=G

⊲ _((2,E),2′)
(Coin⊗Vertex=+1 )⊗Coin
↦−−−−−−−−−−−−−−−−−−−→

ctrl (2,2′)




(cdown,cleft) ↦→ ((2′,leftchild=+1
†E),2)

(cdown,cright) ↦→ ((2′,rightchild=+1
†E),2)

(cleft,cdown) ↦→ ((2′,leftchild=+1E),2)

(cright,cdown) ↦→ ((2′,rightchild=+1E),2)




⊲ nextcoin=
†

Fig. 21. The walk step of the boolean formula algorithm

Our compilation algorithm serves two purposes. First, it makes clear that Qunity is realizable
on a quantum computer. Realizability is not immediately clear from the definitions of Qunity’s
semantics; some quantum languages like Lineal [Arrighi and Dowek 2017] and the zx-calculus
[van de Wetering 2020] allow for programs to be written with norm-increasing semantics and thus
have no physical interpretation. Second, it gives an intuition on what is operationally happening
step-by-step in the physical computer and answers questions about data representation, automatic
uncomputation, and the interplay between Qunity’s pure and mixed modes of computation.
There are some obvious challenges in compiling Qunity to low-level circuits. In particular,

the ctrl construct can make irreversible programs reversible, and the try-catch construct can
make trace-decreasing programs trace-preserving. We solve these problems by augmenting the
circuit with ancillary “garbage” and “flag” qubits, and then compiling it into a unitary circuit.
The garbage qubits are used to store discarded information, taking advantage of the deferred
measurement principle [Nielsen and Chuang 2010, p. 186], and the ctrl expression performs a
reverse computation to “uncompute” this garbage and produce a reversible circuit. The flag qubits
are used as a kind of “assertion,” where a nonzero flag qubit corresponds to an error that can
be caught by the try-catch expression. Our main result, proven in the supplemental report, is
summarized by the following theorem:

Theorem 6.1. There is a recursive procedure that compiles any well-typed Qunity program to a

qubit-based circuit consisting only of single-qubit gates and controlled operators. The unitary semantics

of this low-level circuit will correspond closely to the (potentially norm-decreasing) semantics of the

Qunity program, as made precise by Definitions 6.2 and 6.3 in Section 6.3 below.

6.1 Overview

Compiling Qunity programs to qubit circuits happens in two stages: from Qunity programs to
high-level circuits, and from high-level circuits to low-level qubit circuits. More precisely:
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The input is a valid typing judgment, as defined in Section 3, for either an expression or program,
pure or mixed. We assume that the compiler has access to the proof of validity for the typing
judgment, and our compiler (like our semantics) is defined as a recursive function of this proof.
An intermediate representation uses quantum circuits of the sort found in most quantum

computing textbooks, with two notable exceptions:

(1) The wires in the circuit correspond to the Hilbert spaces defined in Definition 4.5, rather
than single qubits. In our circuit diagrams, we will label wires with the Hilbert space they
represent and a “slash” pointing to the labeled wire. This is useful because it is easier to
analyze circuit semantics if we can algebraically manipulate vectors in the direct sum of
Hilbert spaces rather than the corresponding qubit encodings of these vectors. Using wires to
represent the direct sum of Hilbert spaces is unconventional, but not unheard of in graphical
quantum languages [Chardonnet et al. 2022].

(2) The boxes in the circuit correspond to norm-non-increasing operators and trace-non-
increasing superoperators rather than unitary operators and trace-preserving superoperators
(cptp maps). Again, this is not unheard of: Fault-tolerant quantum circuits are often drawn
and analyzed with norm-decreasing “A -filter” projectors [Gottesman 2010].

Some of our circuits will be “pure,” involving nomeasurement and described by norm-non-increasing
linear operators. Others will be impure, potentially involving measurement and described by trace-
non-increasing superoperators. In both cases, a vertical stacking of boxes represents a tensor
product, a horizontal stacking of boxes represents function composition, and a bare wire represents
the identity. Whenever we use a pure component described by the operator � within an impure
circuit, it has superoperator semantics d ↦→ �d�†.

The output is a low-level qubit-based unitary quantum circuit of the sort standard in quantum
computing literature. We provide circuit diagrams, and it should be obvious how to implement these
circuits in a runnable quantum assembly language such as OpenQasm [Cross et al. 2021]. Here, wire
labels indicate the number of qubits in a particular register, and unlabelled wires can be assumed
to represent a single qubit. All of these circuits will be “pure” (unitary and measurement-free), and
we assume that the controlled gate |0⟩⟨0| ⊗ I + |1⟩⟨1| ⊗* is implementable whenever the unitary*
can be, as this sort of quantum control is a primitive “gate modifier” in OpenQasm.
In what follows, we will refer to our intermediate circuit representation as “high-level circuits”

and the target qubit language as “low-level circuits.” High-level circuits semantically described by
superoperators will be referred to as “decoherence-based,” while those that are measurement-free
will be referred to as “pure.” Section 6.2 outlines the compilation from Qunity programs to high-level
circuits, and Section 6.3 outlines the compilation of these high-level circuits to low-level circuits.

6.2 �nity Programs to High-Level Circuits

Our compiler, like our denotational semantics, is a recursive function of a valid typing judgment.
Sometimes we do not depend on the compiled subcircuit directly, but rather a transformed version of
this circuit; we make it clear when we do this and show how to implement these circuit transformers
in the supplemental report. For each kind of judgment, we describe below the correspondence
between the Qunity semantics and the high-level circuit semantics and give an example of a
compiled circuit.

Pure expressions. Given a judgment (Γ ∥Δ ⊢ 4 : ) ), the compiler produces a pure circuit with input
space H(Γ) ⊗ H (Δ) and output space H(Γ) ⊗ H () ). The semantics of this circuit � corresponds
to Qunity expression semantics in the following way:

⟨f, E |� |f, g⟩ = ⟨E | Jf : Γ ∥ Δ ⊢ 4 : ) K |g⟩
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Recall that the typing context Γ ∥ Δ is partitioned in two: left of the ∥ is the “classical” context Γ and
right of it is the “quantum” context Δ. The semantics makes the distinction clear – Γ determines the
classical parameter to the denotation, while Δ determines input Hilbert space. In the compilation
setting, the story is slightly different. Because even classical computation may need to be done
reversibly on quantum data, our compiler uses H(Γ) as an auxiliary Hilbert space holding the
variables used in a classical way. Practically, “used in a classical way” means that the wires in this
ancilla register are used only as “control” wires, so any data on this register remains unchanged in
the standard basis. For this reason, we depict these gates in circuit diagrams with a control on the
classical Γ register:

H(Γ) H (Γ)

H (Δ) Γ ∥ Δ ⊢ 4 : ) H() )

Seven inference rules define the pure expression typing relation, and in the supplemental report
we give a compiled circuit for each of these cases. As an example, Figure 22 shows the circuit for
the T-PurePair typing rule, which includes as subcircuits the compiled subexpressions. It uses a
“share” gate graphically represented by the “controlled cloud” component that copies quantum data
in the standard basis, mapping |g⟩ ↦→ |g, g⟩. We show how to implement this gate later, in Figure 26.

Γ ∥ Δ,Δ0 ⊢ 40 : )0 Γ ∥ Δ,Δ1 ⊢ 41 : )1

Γ ∥ Δ,Δ0,Δ1 ⊢ (40,41) : )0 ⊗ )1
T-PurePair

H(Δ)

H(Δ)

H(Γ) H (Γ)

H (Δ)

Γ ∥ Δ,Δ0 ⊢ 40 : )0

H()0)

H (Δ0)

Γ ∥ Δ,Δ1 ⊢ 41 : )1

H()1)

H (Δ1)

Fig. 22. T-PurePair compilation

Pure programs. Given a judgment (⊢ 5 : ) ⇝ ) ′), the compiler produces a pure circuit with input
spaceH() ) and output space H() ′). This circuit’s semantics is the same as J⊢ 5 : ) ⇝ ) ′K. As an
example, Figure 23 shows the circuit for the T-PureAbs typing rule. Note that this circuit does not
use the compiled circuit for (∅ ∥ Δ ⊢ 4 : ) ) directly; rather, we use a transformed version: its adjoint.
As described in Section 6.3, norm-decreasing operators in our high-level circuits are implemented by
unitary operators in our low-level circuits by treating some of the wires as “prep wires” (initialized
to zero) and some of the wires as “flag wires” (asserted to be zero upon termination). Whenever
a norm-decreasing operator can be implemented, its adjoint can also be implemented by taking
the adjoint of the underlying unitary and swapping the prep and flag wires, reversing the circuit
and swapping the processes of qubit initialization and qubit termination. We describe this circuit
transformer (and others) in more detail in the supplemental report.
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∅ ∥ Δ ⊢ 4 : ) ∅ ∥ Δ ⊢ 4′ : ) ′

⊢ _4
)
↦−→ 4′ : ) ⇝ ) ′

T-PureAbs

H(Δ)
H() ) J∅ ∥ Δ ⊢ 4 : ) K† ∅ ∥ Δ ⊢ 4′ : ) ′ H() ′)

Fig. 23. T-PureAbs compilation

Mixed expressions. Given a judgment (Δ ⊩ 4 : ) ), the compiler produces a decoherence-based
circuit with input space H(Δ) and output space H() ). This circuit’s semantics is the same as
JΔ ⊩ 4 : ) K. As an example, Figure 24 shows the circuit for the T-MixedPerm typing rule. The
c gate here is a series of swap gates that permutes the data in Δ according to the permutation
function c . This example demonstrates the benefit of the explicit exchange rules—exchange of
variables corresponds to swap gates in the quantum circuit.

Δ ⊩ 4 : )

c (Δ) ⊩ 4 : )
T-MixedPerm

H(Δ)
H(c (Δ)) c−1 4 H() )

Fig. 24. T-MixedPerm compilation

Mixed programs. Given a judgment (⊢ 5 : ) ⇛ ) ′), the compiler produces a decoherence-based
circuit with input space H() ) and output space H() ′). This circuit’s semantics is the same as
J⊢ 5 : ) ⇛ ) ′K. As an example, Figure 25 shows the circuit for the T-MixedAbs typing rule. This is
the same as the T-PureAbs circuit, except that there is an extra context Δ0 for unused variables,
which are discarded.

∅ ∥ Δ,Δ0 ⊢ 4 : ) Δ ⊩ 4′ : ) ′

⊢ _4
)
↦−→ 4′ : ) ⇛ ) ′

T-MixedAbs

H(Δ0)

H(Δ)
H() )

J∅ ∥ Δ,Δ0 ⊢ 4 : ) K†

Δ ⊩ 4′ : ) ′ H() ′)

Fig. 25. T-MixedAbs compilation

6.3 High-Level Circuits to Low-Level Circuits

The high-level circuits constructed in the previous section are convenient for analysis, in particular
for our proofs of correctness. For these circuits to be runnable on quantum hardware, however,
an additional compilation stage is necessary, transforming these high-level circuits into low-level
ones. In particular, our high-level circuits manipulate values in V() ) in Hilbert spaceH() ) with
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H() ) H () )

H () )
↦→

. . .

. . .

. . .

. . .

. . .

. . .

size() ) size() )

=prep = size() ) size() )

Fig. 26. A (high-level) “share” gate implemented by (low-level) cnot gates

dim(H () )) = |V() ) |, but low-level circuits use only qubits, working in the Hilbert space C2
=

where = is the number of qubits on the quantum computer. Our compiler must then translate
Qunity programs written for the Hilbert space H() ) into OpenQasm programs that use some
|V() ) |-dimensional subspace of C2

=
, and values in V() ) will be encoded into bitstrings in {0, 1}= .

This number of qubits = is determined from ) by a function size(), shown below. Values in V() )
will end up encoded into bitstrings whose length is size() ) using the function encode(), where “++”
denotes bitstring concatenation.

size(Void) ..= 0 encode(()) = ""

size(()) ..= 0 encode(left)0⊕)1 E) = "0" ++ encode(E)

size()0 ⊕ )1)
..= 1 +max{size()0), size()1)} encode(right)0⊕)1 E) = "1" ++ encode(E)

size()0 ⊗ )1)
..= size()0) + size()1) encode((E0,E1)) = encode(E0) ++ encode(E1)

We can now be precise about what it means to implement a norm-non-increasing operator with
a low-level circuit.

Definition 6.2. We say that it is possible to implement a norm-non-increasing operator � :

H() ) → H() ′) if there is a low-level circuit implementing a unitary operator * : C2
size() )+=prep

→

C
2size()

′ )+=flag
for some integers =prep and =flag such that for all E ∈ V() ), E ′ ∈ V() ′):〈

encode(E ′), 0⊗=flag
��* ��encode(E), 0⊗=prep

〉
= ⟨E ′ | � |E⟩

Here, =prep is the number of “prep” qubits initialized to |0⟩, and =flag is the number of “flag” qubits
asserted to be in the |0⟩ state upon termination. This definition requires that size() ) + =prep =

size() ′) + =flag.

For example, consider the “share” gate graphically represented by the “controlled cloud” in
Figure 22. This gate can be defined for any type ) , where it is mathematically represented by
the isometry

∑
E∈V() ) |E, E⟩⟨E |, copying a value in the standard basis. By Definition 6.2, one can

implement this operator with =prep = size() ) prep qubits and =flag = 0 flag qubits, using the series
of cnot gates shown in Figure 26.
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Definition 6.2 can be adapted to the setting of decoherence and superoperators by including an
additional “garbage” register. This is essentially the Stinespring dilation [Heinosaari and Ziman
2011, p. 186], using the principle of deferred measurement to purify our computation and organize
all of our measurements onto one segment of our output.

Definition 6.3. We say that it is possible to implement a trace-non-increasing superoperator
E : L(H () )) → L(H () ′)) if there is a qubit circuit implementing a unitary operator * :

C
2size() )+=prep

→ C
2size()

′ )+=flag+=garb
for some integers =prep, =flag, and =garb such that for all d ∈

L(H () )), E ′
1
, E ′

2
∈ V() ′):

〈
E ′1
�� E(d) ��E ′2〉 = ∑

1∈{0,1}=garb

〈
encode(E ′1), 0

⊗=flag , 1
��* (

d ⊗ |0⟩⟨0|⊗=prep
)
* †

��encode(E ′2), 0⊗=flag , 1
〉

Like before, =prep is the number of “prep” qubits initialized to |0⟩, and =flag is the number of
“flag” qubits asserted to be in the |0⟩ state upon termination. The new parameter =garb is the
number of “garbage” qubits discarded after use. This definition requires that size() ) + =prep =

size() ′) + =flag + =garb.

For example, under this definition the “discard” used for theH(Δ0) space in Figure 25 can be
implemented by an empty (identity) circuit by setting =garb = size() ). Any implementable pure
circuit is also implementable as a decoherence-based circuit by setting =garb = 0.

6.4 Example

As a concrete example of compiling a simple program, consider a “coin flip” expression defined
below. This program is defined in terms of a meas program that measures its argument in the
standard basis, by copying in the standard basis and then discarding the copy.

meas)
..= _G

)
↦−→ (G,G) ⊲ fstBit⊗Bit

coin ..= measBit (had 0)

= () ⊲ leftBit ⊲ had ⊲ _G
Bit
↦−−→ (G,G) ⊲ _(G0,G1)

)⊗)
↦−−−→ G0

The typing judgment (∅ ⊩ coin : Bit) is compiled into the following high-level circuit. Here
you can see that the (G,G) expression implements the isometry ( |0, 0⟩⟨0| + |1, 1⟩⟨1|), and the fst
program implements a partial trace.

H(G1 : Bit)

H(Bit) H(G :Bit)
H(∅) leftBit had H(Bit)

(G,G)
_(G0,G1)

Bit⊗Bit
↦−−−−−−→ G0
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This is then compiled into the following low-level circuit, with =prep = 2, =flag = 0, =garb = 1,
size(∅) = 0 contextual input wires, and size(Bit) = 1 data output wire.

=prep = 2

had size(Bit) = 1

=garb = 1

7 CONCLUSION

Qunity is designed to unify classical and quantum computing through an expressive generalization
of classical programming constructs. Its syntax allows programmers to write quantum algorithms
using familiar classical programming constructs, like exception handling and pattern matching.
Our type system leverages algebraic data types and relevant (substructural) types, differentiating
between unitary maps and quantum channels but allowing them to be usefully nested. Qunity’s
semantics brings constructions commonly used in algorithm analysis—such as bounded-error
quantum subroutines, projectors, and direct sums—into the realm of algorithm implementation.

We have formally defined the Qunity programming language, proven that its semantics is well-
defined, and shown how it can be used to implement some complicated quantum algorithms. We
have demonstrated a strategy for compiling Qunity programs to low-level qubit-based unitary
circuits and proven that our procedure preserves the semantics, demonstrating that this language
does indeed have a physical interpretation and could be run on quantum hardware. While classical
computers can be modeled by logic gates acting on classical bits, it is far more convenient to use
higher-level programming constructs for most tasks. Qunity’s design similarly abstracts away
low-level qubit-based gates using techniques from quantum algorithms that are overlooked in
existing languages. We hope that Qunity’s features can ease the implementation and analysis of
complicated quantum algorithms written at a high level of abstraction.
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