
Automating NISQ Application Design with MetaQuantum
Circuits with Constraints (MQCC)

HAOWEI DENG, University of Maryland, College Park, USA

YUXIANG PENG, University of Maryland, College Park, USA

MICHAEL HICKS, University of Maryland, College Park, USA

XIAODI WU, University of Maryland, College Park, USA

Near-term intermediate scale quantum (NISQ) computers are likely to have very restricted hardware resources,

where precisely controllable qubits are expensive, error-prone, and scarce. Programmers of such computers

must therefore balance trade-offs among a large number of (potentially heterogeneous) factors specific to

the targeted application and quantum hardware. To assist them, we propose Meta Quantum Circuits with

Constraints (MQCC), a meta-programming framework for quantum programs. Programmers express their

application as a succinct collection of normal quantum circuits stitched together by a set of (manually or

automatically) added meta-level choice variables, whose values are constrained according to a programmable

set of quantitative optimization criteria. MQCC’s compiler generates the appropriate constraints and solves

them via an SMT solver, producing an optimized, runnable program. We showcase a few MQCC’s applications

for its generality including an automatic generation of efficient error syndrome extraction schemes for fault-

tolerant quantum error correction with heterogeneous qubits and an approach to writing approximate quantum

Fourier transformation and quantum phase estimation that smoothly trades off accuracy and resource use. We

also illustrate that MQCC can easily encode prior one-off NISQ application designs —multi-programming (MP),

crosstalk mitigation (CM)— as well as a combination of their optimization goals (i.e., a combined MP-CM).

1 INTRODUCTION
Quantum computers offer potentially significant performance advantages over classical ones for

important classes of problems [Grover 1996; Shor 1997]. Hardware advances have been bringing

this potential ever closer to reality, but we are not there yet. Near-term, intermediate-scale quantum

computing (NISQ) devices have few quantum bits (qubits), and these are prone to errors from several

sources. General-purpose error correction techniques [Calderbank and Shor 1996; Gottesman 1997;

Shor 1995; Steane 1996] consume a substantial number of qubits, so they are not a practical remedy.

As a result, the design of NISQ applications needs to explore ways to optimize the efficiency and/or

reliability of programs by balancing competing tradeoffs. Consider the following few examples.

Syndrome extraction for fault-tolerant quantum error correction [Gottesman 2010; Steane

2006] is an example where one wants to minimize the fidelity loss in extracting quantum error

syndrome information by measurements. Sequentially extracting syndromes, one by one, would

incur many measurements, which each introduces noise. Chao and Reichardt [2018] propose a

scheme to extract multiple syndromes at once, reducing the total number of measurements; however,

this scheme requiresmore (noisy) qubits. Chao and Reichardt present an analytical tradeoff strategy

for when all qubits have the same quality. However, such theoretical analysis becomes impossible

when qubits are heterogeneous, which is common on NISQ machines.

Another example is the generation of approximate circuits of important quantum subrou-
tines, like Quantum Fourier Transformation (QFT) and Quantum Phase Estimation (QPE) [Barenco

et al. 1996]. The goal is to save resources by reducing accuracy. The approach is to identify and

Authors’ addresses: Haowei Deng, Department of Computer Science and Joint Center for Quantum Information and

Computer Science, University of Maryland, College Park, USA; Yuxiang Peng, Department of Computer Science and

Joint Center for Quantum Information and Computer Science, University of Maryland, College Park, USA; Michael Hicks,

Department of Computer Science, University of Maryland, College Park, USA; Xiaodi Wu, Department of Computer

Science and Joint Center for Quantum Information and Computer Science, University of Maryland, College Park, USA,

xwu@cs.umd.edu.

2 H. Deng, Y. Peng, M. Hicks, and X. Wu

prune gates in the fully accurate QFT and QPE circuits, where the pruned gates won’t significantly

change the generated unitary under some distance measure. A specific gate pruning strategy was

suggested by Barenco et al. which is however non-optimal for specific input sizes and gate selection.

A final category of example is scheduling programs to best leverage target architectural
constraints. By doing multi-programming (MP), we can increase overall computer utilization by

running multiple programs at once (in “parallel”). But doing so may decrease reliability: particular
gates and qubits may be more error-prone than others, so multi-programming tightens scheduling

options. Das et al. [2019] propose an algorithm to balance the tradeoff. Crosstalk mitigation (CM) is

another such example, where nearby gate/qubit pairs scheduled in parallel may experience noise

due to crosstalk. Placing them in sequence decreases crosstalk noise, but increases the chances of
error due to decoherence. Murali et al. [2020] propose a layout algorithm to balance the tradeoff.

All of these works offer mechanisms to relax a program’s output fidelity so as to optimize some

other attribute of its performance. In this sense, they support approximate computing [Carbin et al.

2013; Hung et al. 2019; Misailovic et al. 2014], which aims to make the best use of imperfect hardware.

Unfortunately, each only offers one-off improvements. The works either lack algorithmic/automated

support entirely, or when they have it, this support cannot be composed or combined easily, due to

conflicting tradeoffs that themselves would need balancing. For example, removing "parallelism" to

mitigate crosstalk reduces the utilization MP hopes to gain, but also adds a new source of error MP

should consider.

Contribution
In this paper, we presentMeta Quantum Circuits with Constraints (MQCC), the first general-

purpose approximate computing framework for quantum programs. MQCC is a framework that

makes it easy to design, implement, and experiment with optimizations, and to support programming
their customized composition while leveraging automated reasoning. Crucially, MQCC allows users

to express and optimize a variety of metrics. Because we are in a stage of rapid development for

quantum hardware, application designers need to balance trade-offs among many emerging or

even unknown factors.

To useMQCC, an optimization designer starts by writing (or reusing) routines to compute various

attributes of quantum programs; these are the basis of optimization. We have implemented seven

attributes so far: qubitcount, gatecount, crosstalk [Murali et al. 2019a], fidelity, accuracy, circuit depth,
and quantum circuit space-time volume [Fowler et al. 2012; Holmes et al. 2019]. Next, the designer

writes a transpiler that takes the optimization’s input program(s) and introduces meta-level choice
variables into them.

1
In essence, a program with choice variables is a family of programs, and a

valuation of those variables identifies one member of the family. Finally, the designer states an

optimization goal in terms of the attributes of interest, e.g., to maximize one attribute while keeping

another below a threshold.

Now, given a transpiled input, MQCC selects the values of the choice variables that satisfy the

goal. It analyzes the program with respect to the attributes of interest and generates symbolic cost
expressions over the choice variables which express the program’s attributes’ values with respect to

the goal. MQCC encodes these as Satisfiability Modulo Theories (SMT) formulae and solves for

the choice variables, thereby selecting a final program to run on an actual platform. In the worst

case, formula sizes are exponential in the number of choice variables due to the essential hardness

associated with the worst-case optimization problem. But for NISQ-era programs, formula sizes are

often not large so running times are often reasonable. The scalability study in Section 5.6 shows

that most middle-size QASMbench programs, which have up to 10
4
gates, can still be handled by

1
Transpilation is not strictly needed—users of an optimization could insert choice variables manually.

Automating NISQ Application Design with MetaQuantum Circuits with Constraints (MQCC) 3

MQCC efficiently. We have also identified a special case of additive attributes whose formulae are

linear in the number of choice variables, and thus scale better.

We demonstrate MQCC’s generality by using it to implement several case studies. We employ

MQCC to automate the selection of a syndrome extraction scheme of Chao and Reichardt [2018],

where we easily handle the heterogeneous qubit case in MQCC. We also implemented an automated

procedure to trade accuracy for savings of circuit volume in implementations of Quantum Fourier

Transformation (QFT) and Quantum Phase Estimation (QPE). Lastly, we implemented both the MP

and CM optimizations listed above (each involves a tradeoff of two attributes) and also implemented

a novel composition of MP and CM which balances the tradeoff among the three attributes from
MP and CM combined—both use depth, but individually they use noise and crosstalk attributes.

MQCC makes this composition simple to express.

We compared our syndrome extraction strategy with Chao and Reichardt [2018]’s original

extraction scheme as well as an alternative, more parallel scheme on quantum systems that have of

qubits with heterogeneous random errors, developed by Reichardt [2020]. Our experiments suggest

that the MQCC-based solution can always achieve the minimum logical error rate for all kinds of

random errors. In the experiment, MQCC generates the solution in less than 0.1 seconds.

For gate-pruning QFT and QPE, MQCC’s automation is able to identify more efficient strategies

than existing ones [Barenco et al. 1996] for the entire parameter range. MQCC can generate the

solution for QFT/QPE instances with 50 qubits and 11k space-time volume [Fowler et al. 2012] in

40 seconds.

For the remaining case studies, we applied the optimizations to a benchmark of quantum programs

and demonstrated the benefits by running on actual NISQ machines. For CM and MP, we match

or improve previously reported results. Our new optimization, which combines both MP and CM

attributes, allows one to take the crosstalk-induced noise into the consideration in MP tasks. As a

result, we generate multi-programming schedules with both high success probability and small

circuit depth, compared with the one generated with MP attributes alone, on actual NISQ machines.

In all these cases, MQCC’s solver performs well, taking less than 0.1 seconds for each program.

Because NISQ-ready programs are small, we also ran a separate experiment on a benchmark of

larger programs (too big to run on today’s hardware) to see how well MQCC scales. In particular,

we test MQCC’s performance of MP, CM, and MP-CM tasks on a collection of middle-size circuits

(10∼20 qubits with 100∼1000 gates) from representative quantum applications in QASMBench [Li

et al. 2021]. MQCC is able to generate the solution for most test cases within a few seconds, with

some exceptions in a few minutes.

As a final remark, MQCC can be easily integrated into the existing ecosystem of quantum

computing tool-chains. MQCC builds on top of OpenQASM [Cross et al. 2017] and can produce

executable programs in Qiskit and AWS Braket. All code is freely available.

Related Work. Fast but error-prone chips in classical computation inspired the development of

frameworks to trade correctness for performance. Carbin et al. [2013] proposed Rely to handle

reliability specifications and analysis. Users of Rely can specify the quantitative reliability of

each component, and the compiler automatically reasons whether the program is reliable enough.

Misailovic et al. [2014] made one step further with Chisel, automatically optimizing the tradeoff

between reliability and accuracy via integer linear programs.MQCC is inspired by Chisel’s approach:

both set up a constraint problem whose solution selects instructions based on an optimized-for

objective. However, MQCC ismore general:WithMQCC, users can easily define their own attributes

and objective to optimize, whereas with Chisel both the attributes and objective are fixed. Moreover,

in actual manifestation, we have used MQCC on many more, and various, applications than Chisel

did in the classical realm.

4 H. Deng, Y. Peng, M. Hicks, and X. Wu

Hung et al. [2019] and Tao et al. [2021] define logics of quantum robustness to assess the potential
noise accumulation in quantum programs. These logics permit reasoning about noise, but provide

no means to automatically compensate for it. The optimized quantities in these works [Hung et al.

2019; Tao et al. 2021] —reliability, noise, resources, etc.—are additive attributes, in our terminology.

For our applications, we also crucially rely on the flexibility of general attributes provided by

MQCC.

SMT solvers are widely used in programming language and architecture designs, e.g., as the

basis for automation in program verification [Filliâtre and Paskevich 2013; Srivastava et al. 2009],

and specification-based program synthesis [Gulwani et al. 2011; Srivastava et al. 2011, 2010]. The

solver-aided host language Rosette [Torlak and Bodik 2013, 2014] has been designed to ease the

construction of solver-aided domain-specific languages. SMT solvers have also been employed to

design NISQ applications. In addition to the crosstalk example [Murali et al. 2020], one can also

model the qubit mapping and gate scheduling problems as SMT instances [Murali et al. 2019a,b].

MQCC provides a flexible framework that leverages SMT solvers to automate NISQ designs.

2 PRELIMINARIES: QUANTUM PROGRAMMING
Principles of Quantum Computation. The state of a quantum system is made up of qubits. A

qubit has two basis states, typically written as |0⟩ and |1⟩. Unlike classical bits, qubits may be in a

superposition of these states, rather than just one or the other. This is written 𝛼 |0⟩ + 𝛽 |1⟩, where
𝛼, 𝛽 ∈ C are complex numbers called amplitudes satisfying |𝛼 |2+ |𝛽 |2 = 1. The state with 𝛼 = 𝛽 = 1√

2

is written |+⟩ and the state with 𝛼 = 1√
2

and 𝛽 = − 1√
2

is written |−⟩. Information is extracted from

a quantum state via measurement. Measuring a single qubit returns 0 or 1 with probability of |𝛼 |2
and |𝛽 |2, respectively.2 Moreover, it collapses that qubit’s state to |0⟩ or |1⟩, i.e., setting 𝛼 = 0, 𝛽 = 1

or vice versa. A system with 𝑛 qubits can, in general, exist in a superposition of 2
𝑛
possible states;

e.g., a 2-qubit state will have basis states |00⟩, |01⟩, |10⟩, and |11⟩. The exponential size of this

superposition, and the ability of a quantum program to process it “in parallel,” is a key reason for

the potential quantum advantages over classical computation.

Algorithms in a quantum system are expressed as circuits of quantum gates which process qubits,

represented as wires. Such processing evolves the qubits’ amplitudes. For example, the single-qubit

not gate, written x, swaps the amplitudes of the given qubit; e.g., it would evolve 𝛼 |0⟩ + 𝛽 |1⟩ to
𝛽 |0⟩ + 𝛼 |1⟩. Another gate is the Hadamard gate h, which evolves a qubit to

𝛼+𝛽√
2

|0⟩ + 𝛼−𝛽√
2

|1⟩. A
common two-qubit gate is controlled not, or CNOT, which leaves the first qubit alone but transforms

the second via X if the first qubit is 1. Measurement is also an operation, like a gate, with the key

differences that measurement returns a classical result and collapses the state.

Quantum Assembly Language (QASM). A quantum circuit can be specified using the “quan-

tum assembly language” (QASM) [Dousti et al. 2015; Svore et al. 2006]. QASM is a simple text

language that describes quantum circuits as a sequence of gate operations on numbered qubits.

OpenQASM [Cross et al. 2017] provides a bit more high-level structure, while still being compatible

with modern hardware [IBM 2021]. Fig 1(a) is an example.

The only storage types of OpenQASM (version 2.0) are classical and quantum registers, which

are one-dimensional arrays of bits and qubits, respectively. The statement qreg name[size]; declares

an array of qubits while the statement creg name[size]; declares a size-bit classical register. The

qubits are initialized as |0⟩ and the classical bits are initialized to 0.

OpenQASM supports a built-in set of arbitrary single-qubit gates with CNOT (written cx) as the

sole two-qubit gate. A programmer can define different gates using a subroutine-like mechanism

2
This measurement is in the 𝑍 (computational) basis. Measurements can be in other bases as well, as discussed in Sec 3.2.

Automating NISQ Application Design with MetaQuantum Circuits with Constraints (MQCC) 5

1 qreg q[2]; creg c[2];

2 gate cz a,b { h b; cx a,b; h b; }

3 x q[0]; cz q[0],q[1];

4 measure q[1] -> c[1];

5 if (c==2) x q[0];

(a)

1 CX r[0],r[1];

2 h q[0];

3 barrier r,q[0];

4 h r[1];

(b)

Fig. 1. OpenQASM Examples.

with keyword gate; the example code defines a new cz gate which consists of two Hadamard gates

and one CNOT gate. The measure statement measures a qubit and stores the result in a classical

bit. The if statement conditionally executes a quantum operation based on the value of a classical

register. This register is interpreted as an integer, using the bit at index zero as the low order bit.

OpenQASM allows gate sequential control through a special instruction barrier, which prevents

reordering gates across its source line. Consider the example in Fig 1(b). The instruction h r[1] has

to wait until all gates on r[0],r[1],q[0] before line 3 are finished. In particular, it cannot be executed

with h q[0] in parallel.

3 META QUANTUM CIRCUITS WITH CONSTRAINTS
This section describes MQCC, using the problem of fault-tolerant quantum error correction (FQEC)

as an example [Das et al. 2019].

3.1 MQCC Overview
MQCC’s architecture is shown in Fig 2(a). The core of MQCC is the MQCC solver, which takes three

inputs: a quantum meta-program; the definitions of relevant object attributes; and an optimization

goal.

1 qreg q[1];

2 fcho c1 = {0, 1};

3 choice (c1) {

4 0: x(q[0]);

5 1: h(q[0]);

6 }

MQCC meta-programs. The syntax of the MQCC meta-program is essen-

tially standard OpenQASM, but is extended to include choice variables. The
valuation of the choice variables determines the actual program that will run

on the quantum computer—different choice-variable valuations will yield dif-

ferent programs. Consider the example to the left. After declaring a quantum

register, the program defines a free choice variable c1 whose value can be ei-

ther 0 or 1. c1 is used in the subsequent choice statement. When the MQCC

solver produces a solution to the choice variables, it replaces each choice
statement with the branch corresponding the solution. So, if c1 solved to

0, lines 3-6 would be replaced by x(q[0]); if it solved to 1, they would be replaced by h(q[0]);.
After replacement, the program is normal OpenQASM and can run on quantum hardware.

The user of an optimization need not write the meta-program directly; as shown in Fig 2(a),

an optimization-specific transpiler can produce it from a higher-level problem description. The

insertion of choice variables for all applications in our paper is handled automatically by transpilers,

whose design, however, requires domain knowledge of the corresponding application. A new

transpiler is likely required for each new application, and its complexity will depend on the

application. MQCC’s transpilers often leverage Qiskit [Cross 2018] code for generating meta-

programs.

6 H. Deng, Y. Peng, M. Hicks, and X. Wu

Problem
Description

Transpiler

MQCC
Solver

Solution
Program

Target
Backend

Qiskit

AWS-
braket

...

Manually

OR
MQCC Meta-

Program

Object
Attribute

Goals and
Constraints

(a) Overview of MQCC

MQCC Meta-
Program

Object
Attribute

Goals and
Constraints

Cost Expression
Generator

Expression
Optimizer

SMT
Instance

Fixed-choice
MQCC Program

SMT
Solver

Solution
Program

(b) MQCC Solver

Fig. 2. Overview of MQCC

Object attributes. The second MQCC solver input is a set of relevant object attributes. An attribute

is essentially a function from a quantum circuit to a numeric value (e.g., the count of qubits used

by the circuit, the count of gates in the circuit).

Goal and constraints. The third MQCC solver input is the optimization goal and constraints that

must be satisfied. The MQCC solver applies the provided attributes to the meta-program and thus

generates a formula that expresses the attribute in terms of the program’s choice variables. The

solver then comes up with a solution for the choice variables such that these formulae satisfy the

given constraints while meeting the stated goal (e.g., minimize the count of gates in the circuit

while keeping the count of qubits used by the circuit under the given threshold).

3.2 Example: Fault-tolerantQuantum Error Correction
As an example of MQCC usage, we present how it can maximize fidelity when using fault-tolerant

quantum error correction (FQEC) schemes, whose efficacy can depend on the target program and

architectural constraints.

3.2.1 Background. Fault-tolerant quantum error correction protects quantum information from

noise. Classical error correction based on error-correcting codes employs redundancy and extracts

a syndrome to diagnose the error that corrupts an encoded state. Quantum error correction also

employs syndrome extraction [Gottesman 2010]. Each syndrome is extracted by applying a specific

Z
X

|0⟩
|+⟩

(a)

Z
X

|0⟩
|+⟩

(b)

Z
Z
X

|0⟩
|0⟩
|+⟩

(c)

Fig. 3. Syndrome extraction circuit for the ⟦5, 1, 3⟧ code [Chao and Reichardt 2018; Reichardt 2020]. (a)
Circuit to extract the 𝑋𝑍𝑍𝑋𝐼 syndrome. (b) Circuit to extract the 𝐼𝑋𝑍𝑍𝑋 syndrome. (c) Extract syndrome
𝑋𝑍𝑍𝑋𝐼 and 𝐼𝑋𝑍𝑍𝑋 in parallel.

Automating NISQ Application Design with MetaQuantum Circuits with Constraints (MQCC) 7

circuit to the data qubits to extract their information into the ancilla qubits. Then these ancilla

qubits are measured to retrieve the syndrome information and can be reused for the next syndrome

extraction. Fig 3(a)(b) shows two examples where Z indicates a |0⟩ , |1⟩ measurement, X indicates

|+⟩ , |−⟩ measurement and = . In each circuit, the top five qubits are data qubits and

others are ancilla qubits. The ancilla qubits measured with Z measurement are called syndrome

qubits and their measurement results are used to decide whether the data qubits are corrupted.

The data qubits are not corrupted only when all syndrome qubits are measured as |0⟩. Otherwise,
correction circuits will be applied to the data qubits based on the measurement results. The ancilla

qubits measured with X measurement are called "flag" qubits and their measurement results are

used to detect the error in the syndrome extraction circuits. The syndrome extraction circuits are

correct only if all flag qubits are measured as |+⟩.
As with classical error correction, many efficient FQEC codes are known [Bacon 2006; Fowler

et al. 2012; Steane 1996]. One is the perfect ⟦5, 1, 3⟧ code [Laflamme et al. 1996]. For this code, there

are four syndromes, named 𝑋𝑍𝑍𝑋𝐼 , 𝐼𝑋𝑍𝑍𝑋 , 𝑋𝐼𝑋𝑍𝑍 , and 𝑍𝑋𝐼𝑋𝑍 . Fig 3(a)(b) respectively show

the circuits that extract syndromes 𝑋𝑍𝑍𝑋𝐼 and 𝐼𝑋𝑍𝑍𝑋 .

There are also many existing syndrome extraction strategies. For example, Shor-style syndrome

extraction [DiVincenzo and Aliferis 2007] requires𝑤 + 1 or𝑤 ancilla qubits, where𝑤 is the largest

weight of a stabilizer generator. Steane [1997, 2002] uses at least a full code block of extra qubits,

while Knill [2005b] uses an encoded EPR state and thus at least two ancilla code blocks. Chao and

Reichardt [2018] and Yoder and Kim [2017] propose syndrome extraction strategies based on flag

qubits that use only two ancilla qubits.

For a large code with many syndromes, it can be inefficient to extract the syndromes one after the

other. Reichardt [2020] introduce the method to extract multiple syndromes in parallel. The circuit

in Fig 3(c) extracts ⟦5, 1, 3⟧ code’s 𝑋𝑍𝑍𝑋𝐼 and 𝐼𝑋𝑍𝑍𝑋 syndromes at once. Compared to extracting

two syndromes sequentially, extracting syndromes in parallel requires one more qubit (eight vs.

seven) but one fewer qubit measurement (ZZX vs. ZX,ZX). There is a trade-off between the count

of ancillary qubits and the number of measurements, so the strategy for extracting syndrome should

be chosen carefully. Quantum error correction aims to protect quantum information from quantum

noise and the trade-off should aim to increase the procedure’s fidelity. Since error may occur during

the qubit measurement, fewer qubit measurements can improve fidelity. On the other hand, using

more ancilla qubits can harm it. In practice, different physical qubits have different error rates and

the application will use the qubits with the highest fidelity first; more ancillary qubits mean that

qubits with higher error rates might be used, decreasing the fidelity of the whole procedure.

3.2.2 Expressing the FQEC tradeoff with MQCC. We can use MQCC to maximize Fidelity—an
attribute modeled by the probability that no error occurs in the error correction procedure—while

satisfying the constraint QubitCount < \ where QubitCount is an attribute that estimates the

count of ancilla qubits, and \ is a provided threshold. We give the definition of Fidelity and

QubitCount below.
We model the probability of error using the standard depolarizing noise model [Knill 2005a;

Nielsen and Chuang 2002]. The depolarizing noise model assumes that a quantum operation’s

error consists of random, independent applications of products of Pauli operators after the gate

with probabilities determined by the gate. Suppose the "depolarizing" error for a qubit 𝑒𝑝 : the

probability that |0⟩ (|+⟩) state preparation erroneously produces |1⟩ (|−⟩). A binary (such as Z
or X) measurement results in the wrong outcome with probability 𝑒𝑚 = 𝑒𝑝 ; for a quantum gate,

each qubit the gate is applied is modified by one of the three possible Pauli operators, each with

probability 𝑒𝑝 . With this noise model, given the 𝑒𝑝 for each qubit, the probability 𝑃 that no error

occurs in a quantum circuit 𝑆 can be estimated as the product of the probability of no error for

8 H. Deng, Y. Peng, M. Hicks, and X. Wu

1 module dualCZ(q1 , q2){

2 h(q1);

3 cnot(q1 ,q2);

4 h(q1);

5 }

6

7 module Extract_XZZXI(data ,anc ,r){

8 \\Extract sydrome XZZXI

9 \\The same circuit as in Fig.1(a)

10 reset(anc[0],anc [1]);

11 h(anc [1]);

12 dualCZ(data[0], anc [0]);

13 cnot(anc[1], anc [0]);

14 cnot(data[2], anc [0]);

15 cnot(data[3], anc [0]);

16 cnot(anc[1], anc [0]);

17 dualCZ(data[3], anc [0]);

18 measureZ(anc[0],r[0]);

19 measureX(anc[1], r[1]);

20 }

21 module Extract_IXZZX(data ,anc ,r){...}

22 \\The same circuit as in Fig.1(b)

23 \\Similar circuits to extract other syndromes

24 module Extract_XIXZZ(data ,anc ,r){...}

25 module Extract_ZXIXZ(data ,anc ,r){...}

26

27 module Extract_both_12(data ,anc ,r){

28 \\Extract XZZXI and IXZZX in parallel

29 \\The same circuit as in Fig.1(c)

30 ...

31 }

32 module Extract_both_34(data ,anc ,r){

33 \\Extract XIXZZ and ZXIXZ in parallel

34 ...

35 }

(a)

1 qreg data [5];

2 qreg anc1 [2];

3 creg r1[2], r2[2], r3[2], r4[2];

4 ... \\Module declaration from part (a)

5 Extract_XZZXI(data , anc1 , r1);

6 Extract_IXZZX(data , anc1 , r2);

7 Extract_XIXZZ(data , anc1 , r3);

8 Extract_IXZZX(data , anc1 , r4);

(b)

1 \\Register and variable declarations

2 qreg data [5];

3 qreg anc1[2], anc2 [3];

4 creg r1[2], r2[2], r3[2], r4[2];

5 creg r5[3], r6[3];

6 fcho c1,c2 = {0, 1};

7 ... \\Module declaration from part (a)

8 \\Main part of the meta-program

9 \\Extract syndrome XZZXI and IXZZX

10 choice (c1){

11 0:

12 Extract_XZZXI(data , anc1 , r1);

13 Extract_IXZZX(data , anc1 , r2);

14 1:

15 Extract_both_12(data , anc2 , r5);

16 };

17

18 \\Extract syndrome XIXZZ and ZXIXZ

19 choice (c2){

20 0:

21 Extract_XIXZZ(data , anc1 , r3);

22 Extract_IXZZX(data , anc1 , r4);

23 1:

24 Extract_both_34(data , anc2 , r6);

25 };

(c)

Fig. 4. (a) Predefined modules of the ⟦5, 1, 3⟧ code syndrome extraction circuits. (b) Fault-tolerant syndrome
extraction for ⟦5, 1, 3⟧ code given by programmer. (c) MQCC meta-program produced by transpiler running
on (b).

each operation:

𝑃 =
∏
𝑜𝑝∈𝑆

(1 − 𝐸𝑜𝑝) ⇐⇒ log(𝑃) =
∑
𝑜𝑝∈𝑆

log(1 − 𝐸𝑜𝑝), (3.1)

𝑒1
3𝑒1 3𝑒1

𝑒2
3𝑒2

𝐻

where 𝐸𝑜𝑝 denotes the probability that the operation 𝑜𝑝 is modified

by Pauli operators. The corresponding logarithm term can change the

probability expression into a linear expression. For example, consider

the Bell state preparation circuit to the right. Given 𝑒1, 𝑒2 as the error

rate for two qubits, depolarizing error may occur at the red points with

Automating NISQ Application Design with MetaQuantum Circuits with Constraints (MQCC) 9

the corresponding probability. So the probability 𝑃 that no error occurs

in the circuit is the product (1 − 3𝑒1)2 (1 − 3𝑒2).
Now we can define our two attributes, Fidelity andQubitCount. The Fidelity attribute applied

to a syndrome extraction circuit 𝑆 estimates 𝑙𝑜𝑔(𝑃) where 𝑃 is the probability that no error occurs

in 𝑆 based on the standard depolarizing noise model [Knill 2005a] described in Section 3.2.1. The

QubitCount attribute applied to 𝑆 computes the total qubit count used by the circuit. Programmers

can easily define their own attributes, and these can be reused for different programs and problems.

Formal definitions of Fidelity and QubitCount are given in Section 4.

Suppose we want to optimize the program in Fig 4(b), which extracts all syndromes from the five-

qubit array data in which the information has been pre-encoded. The program invokes syndrome

extraction circuits Extract_..., defined in Fig 4(a) (and corresponding to those in Fig 3), one after

the other. We want to allow for the possibility that some could be extracted in parallel depending

on our optimization tradeoff. In MQCC, this possibility is expressed with choice variables. Fig 4(c)

shows the meta program that corresponds to Fig 4(b). It differs in that it has introduced two

choice variables whose solution may allow calling Extract_both_12 and/or Extract_both_34,
respectively, which invoke two extraction circuits in parallel, rather than the alternative invocation

in sequence. We produce this meta-program automatically by running a transpiler on Fig 4(b).

Transpilation is often easy to build, which will be discussed in Section 3.4.

Let’s look more closely at the meta-program in Fig 4(c).

Line 2-5 define quantum and classical registers used in the program as usual, using the qreg and

creg syntax.

Line 6 declares the program’s choice variables. We use keyword fcho to define two free choice
variables 𝑐1, 𝑐2 that choose value in {0,1}. A choice variable’s value can be any integer within an

enumeration {𝑎1, 𝑎2, ..., 𝑎𝑛} or an interval [𝑎1, 𝑎2] with 𝑎1 < 𝑎2. In this program, these two choice

variables are used to decide the strategy of extracting four syndromes.

Line 7 is a placeholder for the syndrome extraction circuits given in Fig 4(a). A module in MQCC

can be viewed as macro over its parameters.

Lines 10-25 contains the part of the meta-program that expresses the possible schedules. Two

choice statements decide to extract syndromes sequentially or in parallel, based on the value of

choice variables 𝑐1, 𝑐2. The choice statement on lines 10-16 says that extracting syndrome 𝑋𝑍𝑍𝑋𝐼

and 𝐼𝑋𝑍𝑍𝑋 sequentially with only two ancilla qubits if 𝑐1 = 0 or in parallel with three ancilla

qubits if 𝑐1 = 1. The choice statement on lines 19-25 does similarly for syndrome 𝑋𝐼𝑋𝑍𝑍 and

𝑍𝑋𝐼𝑋𝑍 .

3.3 MQCC Solver
Now let us see how the MQCC solver works. Its operation is shown in Fig 2(b).

Cost Expression Generator. The MQCC solver’s Cost Expression Generator (CEG) computes each

input attribute for the meta-program to produce a formula that expresses that attribute’s value in

terms of the meta-program’s choice variables. For the example in Fig 4, the CEG would produce

the following formula for the QubitCount attribute:

QubitCount : 7𝛿0𝑐1𝛿
0

𝑐2
+ 8𝛿0𝑐1𝛿

1

𝑐2
+ 8𝛿1𝑐1𝛿

0

𝑐2
+ 8𝛿1𝑐1𝛿

1

𝑐2
. (3.2)

Here, the term 𝛿𝑖𝑐 evaluates to 1 if the value of 𝑐 equals 𝑖 , and evaluates to 0 otherwise. Referring to

Fig 4, we can see that if 𝑐1 = 𝑐2 = 0 then all syndromes are extracted sequentially and only need

seven qubits in total (five data qubits + two ancilla qubits); otherwise, syndromes are extracted in

parallel in at least one choice statement, so eight qubits are needed in total.

10 H. Deng, Y. Peng, M. Hicks, and X. Wu

In the general case, the number of terms in a CEG-produced formula relates to the number of

valuations of the choice variables. We see this in the formula for QubitCount, which has four

terms. However, we identified an optimized cost generation algorithm for attributes we call additive,
which means that the attribute value of a program 𝑆 can be computed from a linear combination

of its sub-programs. The resulting expression will be linear in the number of choice variables.

As an example, the Fidelity attribute is additive. The probability that no error occurs after two

operations is the product of the individual operations’ probabilities; the Fidelity attribute evaluates

the logarithm of the probability, translating the product to a sum. A programmer may specify when

an attribute is additive, which will prompt the CEG to optimize the generation of its cost expression

(indicated as Expression Optimizer in the figure).

Consider our example in Fig 4. Suppose the Fidelity when extracting syndromes 𝑋𝑍𝑍𝑋𝐼 and

𝐼𝑋𝑍𝑍𝑋 sequentially or in parallel is −0.011 and −0.012, respectively. Then the fidelity of the first

choice statement (lines 10-16) is calculated as −0.011𝛿0𝑐1 + (−0.012)𝛿1𝑐1 . Similarly suppose the error

of the second choice statement (lines 19-25) is calculated as −0.013𝛿0𝑐2 + (−0.012)𝛿1𝑐2 . Since the
Fidelity attribute is additive, the CEG sums these two:

Fidelity : − 0.011𝛿0𝑐1 + (−0.012)𝛿1𝑐1 + (−0.013)𝛿0𝑐2 + (−0.012)𝛿1𝑐2 . (3.3)

How this formula was computed is explained in Section 4.3.

Solution by SMT Encoding. With the cost expressions generated for each object, MQCC encodes

them as SMT instances based on the user’s goal and constraints. Then MQCC uses an SMT solver

to assign values to choice variables. In FQEC case, if the QubitCount threshold is 7, MQCC will

choose 𝑐1 = 0, 𝑐2 = 0, and extract all syndromes sequentially. If there is more allowed qubits, MQCC

will choose 𝑐1 = 0, 𝑐2 = 1 to maximize the Equation 3.3.

Scalability. This example application demonstrates that some attributes are exponential in the

choice space, but the choice space tends to be rather small in many applications. Equation 3.2 shows

the formula of attribute QubitCount as an example. QubitCount is not an additive attribute. When

composing several subprograms whose QubitCount is determined by a choice variable, evaluating

the total QubitCount of the composed program has exponential complexity since each subprogram

may share some qubits. But in FQEC applications, the number of choice variables depends on the

count of syndromes to extract. The syndrome extraction program for the most commonly used

quantum error correction code needs no more than ten syndromes (e.g., five in the perfect code, six

in the Steane code, and eight in the Shor code). So MQCC has good scalability in this application.

3.4 Construction of MQCC Meta-programs
Ideally, an optimization designer will write a transpiler to automatically construct an appropriate

MQCC meta-program given a normal, target program. This allows normal programmers to use

MQCC in a push-button fashion: They specify the tradeoff they want optimize, provide their input

program to that optimization’s custom transpiler, and then invoke MQCC on the result, which

produces the optimized program. Without a transpiler, e.g., perhaps when experimenting with a

new optimization of different tradeoffs, a programmer can manually construct a meta program.

In our experience, writing transpilers is straightforward: We have done so for every optimiza-

tion presented in this paper. For the FQEC example just presented, the transpiler works by first

detecting the substitutable usage of FQEC modules, e.g., Extract_IXZZX immediately followed

by Extract_XIXZZ on the same registers. When it finds one, it generates a corresponding choice
variable (as on line 6 in Fig 4(c)) and introduces a choice statement which selects between the

original usage and one that happens in parallel (as on lines 10-25 in Fig 4(c)). Building a transpiler

requires modeling the design space of the target problem, which will then determine the use of

Automating NISQ Application Design with MetaQuantum Circuits with Constraints (MQCC) 11

choice variables: their locations and granularity, and pieces of alternative QASM programs that

will be stitched together. In our experience, the modeling step is natural given the problem, and the

engineering overhead of building a transpiler is minimal; it took us 1 or 2 hours on average, for

each optimization.

3.5 Implementation of MQCC
We implement MQCC in Python using PLY [Beazley 2018], which provides lex and yacc parsing

tools. We choose Python for its popularity, accessibility, and flexibility. In particular, it allows the

developers to easily define various attributes with Python classes. The SMT optimization for MQCC

uses the Z3 SMT solver [De Moura and Bjørner 2008] version 4.8.9.

4 FORMALIZATION OF MQCC
This section presents MQCC formally, including its meta-language, attribute definitions, and

symbolic cost expressions (but not its app-specific transpilers). We prove that additive attributes’

optimized cost procedure is correct.

4.1 Language Syntax
The formal syntax of MQCC meta-programs is shown in Figure 5. A meta-program 𝑃 consists of

a sequence of declarations 𝐷 and a statement 𝑆 . There are two kinds of declarations:
3 𝑅𝑒𝑔𝐷𝑒𝑐𝑙

declares classical and quantum registers, and𝑉𝑎𝑟𝐷𝑒𝑐𝑙 declares MQCC choice variables. A statement

𝑆 can be empty, an operation 𝑂 , a 𝑐𝑎𝑠𝑒 , a 𝑐ℎ𝑜𝑖𝑐𝑒 , or a sequence of semicolon-separated statements.

• Operations𝑂 are primitive operations 𝑜𝑝 over a list of registers
−−→𝑟𝑒𝑔, according to a list of (optional)

parameters
−→𝑟 . An operation could be a quantum gate, in which case 𝑜𝑝 is the name of the gate

and
−−→𝑟𝑒𝑔 identifies input/output quantum registers, e.g., cnot(q1,q2). An operation could also be

a measurement, e.g., measure(q1,c1), which measures q1’s contents and stores the result in c1.

Operations could also be purely classical, e.g., add(c1,c2) to add c1 to c2 and store the result back

in c1.

• A 𝑐𝑎𝑠𝑒 statement is a classical conditional. It chooses a branch based on the value of the classical

register 𝑐𝑟𝑒𝑔. Similar to OpenQASM, 𝑐𝑟𝑒𝑔 is interpreted as an integer, using the bit at index zero

as the low order bit.

• A 𝑐ℎ𝑜𝑖𝑐𝑒 statement chooses a candidate statement based on the valuation of choice variable 𝑣𝑎𝑟 ;

a value 𝑖 denotes statement 𝑆𝑖 .

MQCC is a meta-language, in the sense that a meta-program 𝑃 ’s semantics is determined by

the quantum program that remains once its choice variables are decided. Let 𝜎 be a map from

choice variables 𝑣𝑎𝑟 to their values 𝑖 . We can reduce 𝑃 to a normal program by replacing each

choice(𝑣𝑎𝑟){𝑖 : 𝑆𝑖 } statement with (recursively reduced) branch 𝑆𝑘 when 𝜎 (𝑣𝑎𝑟) = 𝑘 . The reduced

program is trivially compiled to an equivalent OpenQASM program.

4.2 Attribute Semantics
An attribute 𝐴 is particular characterization of a quantum program’s execution. An attribute is

defined according to a tuple (𝑇, empty, op, case, value). Here, 𝑇 is the type of the state of attribute
𝐴, and we can view a program statement 𝑆 as an attribute state transformer : Given an initial state 𝑠

and a valuation of choice variables to values 𝜎 , we say program statement 𝑆 will produce attribute

state 𝑠 ′ when [[𝑆]]𝐴 (𝜎, 𝑠) = 𝑠 ′. Rules for computing the attribute state are given in Figure 6.

In the rules, we write 𝐴.x to refer to the x element of the attribute 𝐴’s tuple. Each of these

elements we define as follows:

3
We omitmodule definitions and register arrays (e.g., qreg𝑞1[10]) from the formal definition, which can be easily encoded.

12 H. Deng, Y. Peng, M. Hicks, and X. Wu

𝑛 ∈ N 𝑖 ∈ Z 𝑟 ∈ R 𝑣𝑎𝑟 ∈ 𝑉𝑎𝑟𝑠 𝑜𝑝 ∈ 𝑂𝑝𝐼𝐷

𝑞𝑟𝑒𝑔 ∈ 𝑄𝑢𝑎𝑛𝑡𝑢𝑚 𝑟𝑒𝑔. 𝑐𝑟𝑒𝑔 ∈ 𝐶𝑙𝑎𝑠𝑠𝑖𝑐𝑎𝑙 𝑟𝑒𝑔.

𝑟𝑒𝑔 ::= 𝑞𝑟𝑒𝑔 | 𝑐𝑟𝑒𝑔

𝑃 ∈ 𝑃𝑟𝑜𝑔𝑟𝑎𝑚 ::=
−→
𝐷 𝑆

𝐷 ∈ 𝐷𝑒𝑐𝑙𝑎𝑟𝑎𝑡𝑖𝑜𝑛 ::= 𝑅𝑒𝑔𝐷𝑒𝑐𝑙 | 𝑉𝑎𝑟𝐷𝑒𝑐𝑙
𝑅𝑒𝑔𝐷𝑒𝑐𝑙 ::= qreg 𝑞𝑟𝑒𝑔; | creg 𝑐𝑟𝑒𝑔;

𝑉𝑎𝑟𝐷𝑒𝑐𝑙 ::= fcho 𝑣𝑎𝑟 = {−→𝑖 }; | fcho 𝑣𝑎𝑟 = [𝑖1, 𝑖2];
𝑆 ∈ 𝑆𝑡𝑚𝑡 ::= 𝜖 | 𝑂 | 𝑐𝑎𝑠𝑒 | 𝑐ℎ𝑜𝑖𝑐𝑒 | 𝑆 ; 𝑆

𝑂 ∈ 𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 ::= 𝑜𝑝 (−→𝑟 ,−−→𝑟𝑒𝑔)
𝑐𝑎𝑠𝑒 ::= case(𝑐𝑟𝑒𝑔){𝑖 : 𝑆𝑖 }

𝑐ℎ𝑜𝑖𝑐𝑒 ::= choice(𝑣𝑎𝑟){𝑖 : 𝑆𝑖 }

Fig. 5. Formal syntax of MQCC meta-programs.

𝑆 = op(exps, regs)
[[𝑆]]𝐴 (𝜎, 𝑠) = 𝐴.op(𝑠, op, exps, regs) [[𝑆1; 𝑆2]]𝐴 (𝜎, 𝑠) = [[𝑆2]]𝐴 (𝜎, [[𝑆1]]𝐴 (𝜎, 𝑠))

𝑆 = case(creg){𝑖 : 𝑆𝑖 }
[[𝑆]]𝐴 (𝜎, 𝑠) = 𝐴.case(𝑠, creg, [[[𝑆𝑖]]𝐴 (𝜎, 𝑠)]𝑖)

𝑆 = choice(var){𝑖 : 𝑆𝑖 } 𝑘 = 𝜎 [var]
[[𝑆]]𝐴 (𝜎, 𝑠) = [[𝑆𝑘]]𝐴 (𝜎, 𝑠)

Fig. 6. The semantics of MQCC program as an attribute-transformer over the program’s statement 𝑆 , using
attribute 𝐴. 𝜎 [𝑣𝑎𝑟] is the valuation of choice variable 𝑣𝑎𝑟 .

• 𝑇 is the type of an attribute’s state used to compute the cost.

• empty : 𝑇 is the initial (empty) state.

• op : 𝑇 × (𝑂𝑝𝐼𝐷 × −→
R × −−→𝑟𝑒𝑔) → 𝑇 takes a state and an operation (its name and arguments), and

produces a new state. It is used in the first rule of Figure 6.

• case : 𝑇 × reg×−→
𝑇 → 𝑇 takes a state, the guard choice register, and a list of states corresponding

to each case branch, and generates the new state. It is used in the third rule of Figure 6.

• value : 𝑇 → R computes the cost of this attribute from the information stored in a state.

We define the tuples of two example attributes, Fidelity and QubitCount, in Section 4.4.

An attribute𝐴’s cost for a particular valuation of choice variables𝜎 is simply𝐴.value([[𝑆]]𝐴 (𝜎,𝐴.empty)).
We want to generate a formula that expresses all possible costs, so the SMT solver can decide what

choice-variable valuation to use. We do so as follows. Let Σ ⊂ (Vars → Z) be the variables’ possible
valuations, then cost

𝐴
of attribute 𝐴 is a function that maps an MQCC program into an expression

over 𝑉𝑎𝑟𝑠 :

cost𝐴 (𝑆) =
∑
𝜎 ∈Σ

𝛿Vars,𝜎 · 𝐴.value([[𝑆]]𝐴 (𝜎,𝐴.empty)) .

Here 𝛿 is a variant of the Kronecker delta function: 𝛿Vars,𝜎 =
∏

var∈Vars 𝛿
𝜎 [var]
var , and 𝛿𝑖var is a unit

expression that contains variable 𝑣𝑎𝑟 , which equals 1 if 𝑣𝑎𝑟 ’s value is 𝑖 , and 0 otherwise. An example

formula was given in Section 3.3, for attribute QubitCount. Each term in the formula is the depth

for a different possible choice of 𝜎—only one term will be non-zero for a given 𝜎 .

Automating NISQ Application Design with MetaQuantum Circuits with Constraints (MQCC) 13

𝑆 = op(exps, regs)
cost

+
𝐴
(𝑆) = 𝐴.value(𝐴.op(𝐴.empty, op, exps, regs)) cost

+
𝐴
(𝑆1; 𝑆2) = cost

+
𝐴
(𝑆1) + cost

+
𝐴
(𝑆2)

𝑆 = case(creg){𝑖 : 𝑆𝑖 } 𝑆𝑖 is choice-free
cost

+
𝐴
(𝑆) =

𝐴.value(𝐴.case(𝐴.empty, creg,
[
[[𝑆𝑖]]𝐴 (𝜎𝜙 , 𝐴.empty)

]
𝑖
))

𝑆 = choice(var){𝑖 : 𝑆𝑖 }
cost

+
𝐴
(𝑆) = ∑

𝑖∈𝑖 𝛿
𝑖
var cost

+
𝐴
(𝑆𝑖)

Fig. 7. The cost expression of choice-in-case-free 𝑆 for additive attributes. Here 𝑖 is the set of enumerated
values that variable var can take.

4.3 Additive Attributes
In general, the generated cost expression cost

𝐴
(𝑆) has a size exponential in the number of choice

variables in 𝑆 . We can use additive attributes to reduce this size.

Let 𝜎𝜙 denote an arbitrary valuation of choice variables. Then an attribute 𝐴 is additive if it

satisfies two conditions:

(1) for any 𝑠 : 𝑇 , op, and valid exps and regs, we have

𝐴.value(𝐴.op(𝑠, op, exps, regs)) = 𝐴.value(𝑠) +𝐴.value(𝐴.op(𝐴.empty, op, exps, regs));
(2) for any 𝑠 : 𝑇 and choice-free statements 𝑆𝑖 , we have

𝐴.value(𝐴.case(𝑠, creg, [[[𝑆𝑖]]𝐴 (𝜎𝜙 , 𝑠)]𝑖))
= 𝐴.value(𝑠) +𝐴.value(𝐴.case(𝐴.empty, creg, [[[𝑆𝑖]]𝐴 (𝜎𝜙 , 𝐴.empty)]𝑖))

We directly derive the cost expression cost
+
𝐴
(𝑆) from the rules in Figure 7 for 𝑆 that contain

no choice statements inside branches of case (so as to meet the second condition). Let 𝑉 be the

maximal number of possibilities of a variables’ values. Notice that cost
𝐴
(𝑆) has𝑂 (𝑉 𝑑) terms where

𝑑 is the number of choice variables, and cost
+
𝐴
(𝑆) has at most 𝑂 (|𝑆 | · 𝑉) terms where |𝑆 | is the

number of constructs of 𝑆 .

The following theorem shows the correctness of cost
+
𝐴
. Its proof is based on induction on 𝑆 and

provided in Appendix A.1.

Theorem 4.1. For a statement 𝑆 such that there is no choice nested in case, we have cost+
𝐴
(𝑆) =

cost
𝐴
(𝑆) for any valid valuation 𝜎 ∈ 𝑉𝑎𝑟𝑠.

4.4 Examples of Attributes
Here we present two attributes, Fidelity and QubitCount, used in the FQEC problem in Sec-

tion 3. We have developed five additional attributes in the case studies in Section 5. Here we use

mathematical notation; in our implementation(Section 3.5), programmers use Python classes.

Fidelity. Here we define the Fidelity attribute to characterize a circuit program’s chances of not

producing an error.

T = R

empty = 0.0

value(s:𝑇) = s

op(s:𝑇 , Op:𝑂𝑝𝐼𝐷, exps:
−→
R , regs:−−→𝑟𝑒𝑔) = s + log(1 - calNoise(Op,exps ,regs))

case(s:𝑇 , creg:𝑟𝑒𝑔, sbs:
−→
𝑇) = min sbs

The type 𝑇 of Fidelity’s state is R, i.e., the state is a real number, representing the 𝑙𝑜𝑔(1 − 𝑃)
where 𝑃 is the probability any error occurs. The empty state is 0.0—an empty circuit program will

14 H. Deng, Y. Peng, M. Hicks, and X. Wu

never introduce error so 𝑃 = 0 and 𝑙𝑜𝑔(1 − 𝑃) = 0.0. The Fidelity attribute’s cost is the fidelity

itself, so the value function simply returns its argument s. The remaining two elements, op and case,

define the fidelity of the program’s basic building blocks:

• The op function increases the program’s total fidelity by the given operation’s fidelity (which

depends on the operation and the qubits it uses). This fidelity is calculated by the function

calNoise, which can be implemented variously based on the target machine.

• For the case function, the parameter sbs refers to the fidelity computed for each branch of the

case. Since we do not know which branch will be chosen in run-time, we conservatively use the

min of these.

Fidelity is an additive attribute so MQCC can generate an optimized cost expression cost
+
𝐴
. We

can see that for the example in Section 3.3.

QubitCount. The second attribute used in Section 3 was QubitCount, which characterizes the

maximum count of operations applied to any qubit in a circuit program. Here is its formal definition:

T = Set [𝑄𝑢𝑏𝑖𝑡]
empty = ∅
value(s:𝑇) = |s|

op(s:𝑇 , Op:𝑂𝑝𝐼𝐷 exps:
−→
R , regs:−−→𝑟𝑒𝑔) = s∪{𝑞 | 𝑞 ∈ regs, 𝑞 is a qubit}

case(s:𝑇 , creg:𝑟𝑒𝑔, sbs:
−→
𝑇) =

⋃
𝑎∈sbs 𝑎

The type 𝑇 of QubitCount’s state is a set of qubits. The empty element of QubitCount is an
empty set. The cost of QubitCount is the cardinality of the qubit set. The elements op and case are

defined thus:

• The op function unions the original qubit set 𝑠 with the set that contains the qubits used in the

input operation 𝑂𝑝 .

• The case function unions the qubit sets of all branches; we do not know which branch will be

chosen at run-time, so we must conservatively remember them all.

QubitCount is not an additive attribute, so we must enumerate all possible valuations when

computing the cost; an example formula is shown in Section 3.3.

4.5 Limitations
MQCC is limited in the optimization problems it can express. In particular, MQCC restricts choice

variables to a finite number of predefined options. Thus, it cannot represent tradeoffs that consider

an infinite number of choices; e.g., it cannot decide the real-valued rotation angle of a parameterized

gate. Moreover, non-additive attributes cannot be used when a large number of choice variables

is involved, for scalability reasons. Despite these limitations, MQCC can express a variety of

interesting problems useful for near-term architectures, as the next section shows. Moreover,

programming attributes in Python afford a fair degree of flexibility; we implemented the eight

attributes in this paper without any difficulty.

5 CASE STUDIES
We evaluate MQCC’s utility by evaluating its use in five case studies. The first considers MQCC’s

performance on the FQEC problem. The second develops a new optimization that trades off

accuracy for circuit volume in QFT and QPE implementations; we show that traditional by-hand

approaches fare worse thanMQCC’s approach. The third and the fourth encode previously proposed

optimizations for multi-programming and crosstalk mitigation [Das et al. 2019; Murali et al. 2020],

while the fifth is a novel combination of the third and the fourth cases, showcasing how MQCC

facilitates composition.

Automating NISQ Application Design with MetaQuantum Circuits with Constraints (MQCC) 15

We apply these optimizations to a benchmark of NISQ-ready programs and find that MQCC runs

quickly, and the optimized programs demonstrate the intended effects when run on real quantum

hardware (matching or bettering previously reported results). We apply MQCC’s optimizations

to the middle-scale benchmark suite collected from QASMBench [Li et al. 2021], and a large scale

QFT circuit; these programs are too big to run on today’s quantum hardware. We find that even

with these larger programs, MQCC scales well. Finally, we apply a sensitivity study for MQCC to

analyze how the input noise parameters affect the programs generated by MQCC for CM and MP

tasks.

5.1 Fault-tolerantQuantum Error Correction
We describe the fault-tolerant quantum error correction (FQEC) problem and MQCC’s programmed

solution in Section 3. The definitions of its relevant attributes Fidelity and QubitCount are given
in Section 4.4.

Evaluation. Existing quantum hardware does not support a complete quantum error correction

procedure and the common evaluation for quantum error correction is based on hypothetical

machine errors and simulators. We follow the same evaluation methodology as Chao and Reichardt

[2018]; Reichardt [2020], which simulate error correction using a standard depolarizing noise error

model and collect the logical failure rate of different syndrome extraction circuits. The standard

depolarizing noise model [Knill 2005a] is described in Section 3.2.2. In the evaluation, we assume

the "depolarizing" error 𝑒𝑝 of all qubits is in Gaussian Distribution 𝐺 (`, 𝜎). We use the Qiskit

noise simulator to simulate the error correction procedure using the ⟦5, 1, 3⟧ code for 10
5
rounds

based on three syndrome extraction strategies: (1) extracting syndromes by Chao and Reichardt

[2018]’s circuit (Fig 3(c)) sequentially; (2) extracting syndromes in parallel by Reichardt [2020]’s

circuits (Fig 3(d)) and (3) extracting syndromes by circuits produced by MQCC.The error correction

procedure of ⟦5, 1, 3⟧ code is a small-size circuit (7 ∼ 8 qubits, < 100 gates) and MQCC solver gives

its solution instantly.

Fig 8 shows the logical error rate of different strategies with various 𝜎/`. The result is intuitive:
under the same `, larger 𝜎 means that some qubits have very bad fidelity; the sequential strategy

performs better since it uses fewer qubits and can avoid using them. MQCC also tends to generate

programs close to the sequential strategy in this case. When 𝜎 is small, parallel strategy becomes

better since it uses fewer qubit measurements, and MQCC tends to generate programs close to the

parallel strategy. The evaluation shows that MQCC can always achieve the minimum logical error

rate given various qubit error rates.

5.2 Trade-off between Accuracy and Resources
The accuracy of a numeric computation is limited by the resources devoted to computing it. We

can use MQCC to balance the accuracy/resource tradeoff.

5.2.1 Approximate QFT. Quantum Fourier Transform is a crucial part ofmany quantum information

processing algorithms. Consider the 𝑛-qubit Quantum Fourier Transform circuit shown in Fig 9.

This circuit has 𝑂 (𝑛2) gates. However, there are many rotations by small angles that do not affect

the final result very much. The standard way to implement an Approximate Quantum Fourier

Transform (AQFT) is by pruning these small-angle rotation gates [Barenco et al. 1996]. Given a

unitary𝑈 and its approximate one𝑉 , we use ∥𝑈 −𝑉 ∥ to estimate the standard distance between the

exact circuit and the approximate one, where ∥ · ∥ is the spectral norm. We apply the union bound to

upper bound the distance between circuits by the sum of the distance between corresponding gates.

For each qubit 𝑞 𝑗 , if we prune the gates 𝑅𝑘 , where 𝑘 > ℎ 𝑗 for a threshold ℎ 𝑗 , the approximation

16 H. Deng, Y. Peng, M. Hicks, and X. Wu

10 2 10 1

/ , = 0.001
0.0152

0.0154

0.0156

0.0158

0.0160

0.0162

0.0164

0.0166

0.0168

Lo
gi

ca
l E

rro
r R

at
e

seq
parallel
MQCC

10 2 10 1

/ , = 0.01
0.550

0.555

0.560

0.565

0.570

0.575

0.580

0.585

Lo
gi

ca
l E

rro
r R

at
e

seq
parallel
MQCC

Fig. 8. Logical error rates for simulated error correction compared with previous strategies (Lower is better);
using the parallel syndrome-extraction circuit of Fig 3(d), in red, the sequential syndrome-extraction circuit
of Fig. 3(c), in green, and the syndrome-extraction produced by MQCC, in blue. Errors are from a standard
depolarizing noise model [Knill 2005a], with the depolarizing error of all qubits in Gaussian distribution
𝐺 (`, 𝜎).

· · ·
· · ·

· · ·
.

|x1⟩ H R2 R3 Rn |y1⟩
|x2⟩ H R2 Rn−1 |y2⟩
|x3⟩ H Rn−2 |y3⟩

...
...

|xn⟩ H |yn⟩

𝑅𝑘 :=

(
1 0

0 𝜔𝑘

)
𝜔𝑘 = 𝑒𝑥𝑝 (2𝜋𝑖/2𝑘)

Fig. 9. Quantum circuit for QFT algorithm

error 𝜖 𝑗 on 𝑞 𝑗 can be estimated by 𝜖 𝑗 <
1

2
ℎ𝑗
. We aim to keep the total approximation error less than

a threshold 𝜖𝑄𝐹𝑇 ; i.e.,
∑𝑛

𝑖=1 𝜖𝑖 < 𝜖𝑄𝐹𝑇 .

Our MQCC goal is to minimize the gate count in the AQFT circuit while satisfying the accuracy

bound 𝜖𝑄𝐹𝑇 . To do this, we allocate one choice variable for each qubit in AQFT to decide its

threshold ℎ 𝑗 . The MQCC program generated by the transpiler is

1 \\n-bit AQFT

2 \\controlled phase rotation gates for q[1]

3 choice({0 ,1 ,2 ,...}){

4 0 : CRZN(h1_0 , q[1]);

5 1 : CRZN(h1_1 , q[1]);

6 2 : CRZN(h1_2 , q[1]);

7 ...

8 }

9 \\controlled phase rotation gates for q[2]

10 choice({0 ,1 ,2 ,...}){

11 0 : CRZN(h2_0 , q[2]);

12 1 : CRZN(h2_1 , q[2]);

13 2 : CRZN(h2_2 , q[2]);

14 ...

15 } ...

Automating NISQ Application Design with MetaQuantum Circuits with Constraints (MQCC) 17

10
−10

10
−8

10
−6

10
−4

10
−2

400

600

800

1,000

1,200

𝜖𝑄𝐹𝑇

G
a
t
e
C
o
u
n
t

MQCC

Baseline

Fig. 10. Trade-off between the gate count and the
accuracy for 50-qubit AQFT circuit. Lower gate count
is better.

Qubits Space-time Volume Running time
20 1.84k 2.28s

30 4.08k 8.85s

40 7.04k 12.93s

50 11k 39.33s

Fig. 11. MQCC’s running time on various size AQFT
circuits.

|0⟩
...

|0⟩
|0⟩

|ψ0⟩ n

H

H

H

U U2

· · ·

· · ·
· · ·
· · · U2k

QFT †
...

Fig. 12. Quantum circuit performing Quantum
Phase Estimation on an 𝑛-qubit system with an ac-
curacy of 𝑘 + 1 bits.𝑈 is the given oracle unitary.

10
−6

10
−5

10
−4

10
−3

10
−2

0.2

0.5

0.8

1.1

1.4

·104

𝜖𝑡𝑜𝑡𝑎𝑙

C
i
r
c
u
i
t
V
o
l
u
m
e

MQCC

Baseline

Fig. 13. Trade-off between circuit volume and the
precision for QPE circuit. Here lower circuit volume
is better.

Term {0,1,2,...} in the choice statement indicates an anonymous (undeclared) choice vari-

able whose value ranges in {0,1,2,...}. Term CRZN(h, q[j]) is a module representing the

various controlled phase rotation gates on qubit q[j], controlled by qubits q[j+1],...,q[h] (so

small angle gates controlled by q[h+1],...,q[n] are pruned). The parameters ha_b (i.e., h1_0,
h1_1,...) in the CRZN specify the threshold. We also define two new attributes, Approximation
and GateCount, for MQCC to estimate program’s approximation error and the total gate count,

respectively. (Both attributes are additive, and similar to Fidelity.)
For evaluation, we use MQCC to minimize a 50-qubit AQFT’s gate count, given various 𝜖𝑄𝐹𝑇 .

We compare against a baseline result is produced by pruning a fixed number—call it ℎ𝑠—of small

angle gates for each qubit [Barenco et al. 1996]. We chose ℎ𝑠 by enumerating all possible values

and choosing the one minimizes the circuit’s gate count. Fig 10 graphs the result, which shows that

MQCC cuts down more gates than the naive pruning strategy since MQCC adjusts the pruning

threshold for each qubit independently.

5.2.2 Quantum Phase Estimation. Quantum Phase Estimation (QPE) [Nielsen and Chuang 2002]

is a direct application of QFT. It estimates the eigenphases of an oracle unitary transformation.

Consider the implementation in Fig 12. The top 𝑘 qubits yield a 𝑘-bit approximation error to the

phase. The value of 𝑘 to choose for QPE depends on the desired accuracy [Meuli et al. 2020]. To

make the success probability of QPE reach 50%, the desired accuracy bound 𝜖𝑄𝑃𝐸 can be bounded

by 𝑘 as 𝜖𝑄𝑃𝐸 ≤ 16𝜋/(2𝑘 − 1). QPE requires an AQFT in the final step. Therefore, to achieve an

overall target accuracy bound 𝜖𝑡𝑜𝑡𝑎𝑙 , we need to keep 𝜖𝑄𝑃𝐸 + 𝜖𝑄𝐹𝑇 < 𝜖𝑡𝑜𝑡𝑎𝑙 .

18 H. Deng, Y. Peng, M. Hicks, and X. Wu

Our MQCC goal is to minimize the circuit’s volume but ensure that the circuit’s approximation

error does not exceed the desired accuracy bound. To achieve this, a choice variable is used to

decide the value of 𝑘 , and the choice of various 𝑘 can be encoded by the following MQCC program

1 choice({0 ,1 ,...}){

2 0: Control_U(k0);

3 AQFT(k0);

4 1: Control_U(k1);

5 AQFT(k1);

6 ... }

Here, Control_U(k) represents the list of controlled oracle gates in theQPE (controlled-𝑈 ,𝑈 2, ...,𝑈 2
𝑘

in Fig 12). The input parameter k is an integer and represents the number of controlled qubits used

in the QPE circuit. k0,k1,... are specified choice for 𝑘 . This program reuses the code in the AQFT

examples as the AQFT module so that MQCC can figure out how many qubits are required and how

many small angle rotation gates will be removed from the AQFT simultaneously. We reuse the

Approximation attribute defined in the AQFT example to calculate the circuit’s approximation

error. We also define a Volume attribute for MQCC to calculate the circuit’s volume.

For evaluation, we use MQCC to minimize a QPE circuit’s volume given various 𝜖𝑡𝑜𝑡𝑎𝑙 . The

number of qubits in the QPE ranges in 15 ∼ 30, and Fig 13 shows the result. The baseline result

is produced by the natural optimization idea for a circuit with multiple parts: divide 𝜖𝑡𝑜𝑡𝑎𝑙 into

𝛾𝜖𝑡𝑜𝑡𝑎𝑙 + (1 − 𝛾)𝜖𝑡𝑜𝑡𝑎𝑙 with some appropriate ratio 𝛾 ∈ (0, 1), then use 𝛾𝜖𝑡𝑜𝑡𝑎𝑙 and (1 − 𝛾)𝜖𝑡𝑜𝑡𝑎𝑙
as thresholds to optimize the controlled unitary part and the AQFT part in QPE separately. We

decide 𝛾 by enumerating 𝛾 ∈ (0, 1) and the one that minimizes the circuit’s volume is chosen. The

experiment shows that MQCC can cut down more circuit volume, especially in small 𝜖𝑡𝑜𝑡𝑎𝑙 cases.

We also measure MQCC’s running time on AQFT circuits with large volume. A circuit’s space-time

volume is defined as the multiplication of its depth and qubit count [Fowler et al. 2012]. Fig 11

shows the result.

5.3 Multi-ProgrammingQuantum Computers
Quantum computer multi programming was proposed by Das et al. [2019]. The idea is simple: Given

two quantum circuits 𝐴 and 𝐵, instead of running 𝐴 to completion and then 𝐵, we can create a

combined circuit 𝐴 + 𝐵 that allocates 𝐴 and 𝐵 to distinct qubits so they can be run in parallel.

Doing so better utilizes the computer but may decrease the quality of the result. This is because

different qubits of a NISQ computer have different error rates; running 𝐴 and 𝐵 serially on the

highest-fidelity qubits will reduce overall error.

The goal of the multi-programming (MP) problem is to maximize utilization while keeping the

fidelity above a stated threshold \ . Whether to run in serial or in parallel depends on the programs

𝐴 and 𝐵, the noise characteristics of the hardware, and \ . Das et al. develop a custom solver for this

problem; we can program it using the MQCC framework.

Solution of MQCC. In this case, we define the relevant attribute Depth and reuse the attribute

Fidelity defined in Section 4.4. The Depth attribute applied to 𝑆 computes, for each qubit, the

length of the sequence of 𝑆 ’s gates operating on that qubit, and then returns the maximum over all

qubits. In the multi-programming problem, minimizing a circuit’s depth will minimize the time

that the quantum chip needs to finish executing all programs. In this problem, given a specific

group of programs that need to run, the workload of the quantum chip is fixed and minimizing

depth is equivalent to maximizing utilization of the chip. MQCC’s goal is to minimize Depth and

the constraint is keeping Fidelity above threshold \ .

Automating NISQ Application Design with MetaQuantum Circuits with Constraints (MQCC) 19

1 module Bell1(q1 ,q2, r){

2 reset(q1 ,q2);

3 h(q1);

4 cnot(q1 , q2);

5 measure(q1 ,r[0]);

6 measure(q2 ,r[1]);

7 }

8

9 module Bell2(q1 , q2, r){

10 reset(q1 ,q2);

11 x(q1);

12 h(q1);

13 cnot(q1 , q2);

14 measure(q1 ,r[0]);

15 measure(q2 ,r[1]);

16 }

1 \\Register and variable declarations

2 qreg q[10];

3 creg r1[2], r2[2];

4 fcho c1 = {0, 1}, c2 = [0, 1];

5 module Bell1(q1,q2){ ... } \\See Left

6 module Bell2(q1,q2){ ... } \\See Left

7 \\Main part of the meta-program

8 choice (c1){

9 0: Bell1(q[1], q[2],r1);

10 1: Bell1(q[7], q[8],r1);

11 };

12 choice (c2){

13 0: Bell2(q[1], q[2],r2);

14 1: Bell2(q[7], q[8],r2);

15 };

Fig. 14. MQCC meta-program for multi-programming two Bell state quantum applications.

We assign a choice variable for each application to decide which qubits are allocated to this

application. Different solutions for these choice variables trade off noise for utilization. For example,

Fig 14 shows the code of two quantum applications to multi-program. Bell1 prepares the Bell state
1√
2

(|00⟩ + |11⟩), while Bell2 prepares 1√
2

(|00⟩ − |11⟩). Both applications need two qubits; we suppose

our target computer can schedule them on either qubits {q[1],q[2]} or qubits {q[7],q[8]}. With this

information the MQCC transpiler (which uses Qiskit’s qubit allocation and mapping library to

find low-error areas and routing paths) will produce the meta-program in Fig 4. Then, taking

this meta-program, the Depth and Fidelity attributes, and the optimization goal and constraint

(“minimize depth with bounded fidelity”), MQCC will solve for the choice variables to produce a

final program that schedules Bell1 and Bell2. Suppose the MQCC solver’s Cost Expression Generator
produce the following formula for the Depth and Fidelity attribute.

Depth : 7𝛿0𝑐1𝛿
0

𝑐2
+ 4𝛿0𝑐1𝛿

1

𝑐2
+ 4𝛿1𝑐1𝛿

0

𝑐2
+ 7𝛿1𝑐1𝛿

1

𝑐2

Fidelity : (−0.045)𝛿0𝑐1 + (−0.066)𝛿1𝑐1 + (−0.027)𝛿0𝑐2 + (−0.043)𝛿1𝑐2
Here, the term 𝛿𝑖𝑐 evaluates to 1 if the value of 𝑐 equals 𝑖 , and evaluates to 0 otherwise. Referring

to Fig 14, we can see that if 𝑐1 = 𝑐2 then the two applications will run in sequence, yielding

a total depth of 7; otherwise they can run in parallel, and the longest sequence is the max of

the two, which is 4. When 𝑐1 = 0 and 𝑐2 = 1 (running in parallel), Depth is 3 while Fidelity
= (−0.045) + (−0.043) = −0.088. When 𝑐1 = 0 and 𝑐2 = 0 (running in sequence), Depth is 5 while

Fidelity is higher: (−0.045) + (−0.027) = −0.072. The result is intuitive: compared to running two

applications sequentially on the low error-rate area {q[1],q[2]}, running them in parallel yields a

higher error rate but a faster execution time.

Evaluation. We use the same applications (Table 1) and follow the same evaluation methodology

as Das et al. [2019]. We package multiple applications as a group and generate several groups.

Applications in each group are then executed in three ways: (1) in parallel, as the baseline; (2)

in sequential, as the baseline; and (3) multi-programmed by MQCC. Das et al. [2019] does not

provide their source code so we do not compare with them directly. The error probability data

used by MQCC is collected from the target machine’s daily calibration. Prior work [Das et al.

20 H. Deng, Y. Peng, M. Hicks, and X. Wu

b
v
3
-
p
e
r
e
3

b
v
3
-
t
o
ff
3

b
v
3
-
f
r
e
d
3

b
v
4
-
b
v
3

b
v
4
-
t
o
ff
3

b
v
4
-
b
v
3
-
t
o
ff
3

b
v
3
-
b
v
3
-
b
v
4

b
v
3
-
b
v
3
-
f
r
e
d
3

0.2

0.4

0.6

P
S
T
(
I
B
M
Q
)

parallel seq MQCC

b
v
3
-
p
e
r
e
3

b
v
3
-
t
o
ff
3

b
v
3
-
f
r
e
d
3

b
v
4
-
b
v
3

b
v
4
-
t
o
ff
3

b
v
4
-
b
v
3
-
t
o
ff
3

b
v
3
-
b
v
3
-
b
v
4

b
v
3
-
b
v
3
-
f
r
e
d
3

0

0.2

0.4

0.6

P
S
T
(
R
i
g
e
t
t
i
)

Fig. 15. PST under isolated or multi-programmed execution for each group on IBMQ (left) and Rigetti (right)
quantum machines. Group name A-B means the group contains two applications A and B. Similarly for the
name A-B-C.

2019] multi-programs exactly two applications but MQCC can naturally accept any number; we

demonstrate several three-application cases.

For each group, we run 8192 trials on IBMQ Boelingen (20 qubits) and Rigetti Aspen-9 (32 qubits).

A trial in which all applications in the group give the correct result is regarded as successful. The
rate of success - the Probability of a Successful Trial (PST) - is used to evaluate the reliability. As

Figure 15 demonstrates, since we set a small error threshold in the evaluation, solutions based

on MQCC successfully maintain higher reliability of all groups compared to running applications

in parallel and are closed to running application in sequential. If we use a larger error threshold,

MQCC will produce a solution with PST close to running applications in parallel but with less

circuit depth compare to in sequential.

5.4 Circuit Reschedule for Crosstalk Mitigation
Machine-dependent crosstalk arises when certain gates are executed in parallel. It is a major source

of noise in NISQ systems [Harper et al. 2020; Murali et al. 2020]. Figure 16 shows the layout of

the IBMQ Boelingen machine with links between high crosstalk gate pairs. Sarovar et al. [2020]

propose a protocol for detecting and localizing the crosstalk in hardware. Niu and Todri-Sanial

[2021] report several protocols for characterizing crosstalk in NISQ hardware, and discuss different

crosstalk mitigation methods in both hardware and software. In software, crosstalk can be avoided

by running problematic gates in sequence, but doing so increases circuit depth, which increases the

chance of decoherence errors. Murali et al. [2020] propose a software-based method to balance this

Application Description Qubits Gates CNOTs

bv3

Bernstein-Vazirani [Bernstein and Vazirani

1997]

3 8 2

bv4

Bernstein-Vazirani [Bernstein and Vazirani

1997]

4 11 3

h3 Hamiltonian Simulation 3 11 4

h4 Hamiltonian Simulation 4 15 6

Toff3 Toffoli gate 3 15 6

Fred3 Fredkin gate 3 17 8

Pere3 Peres gate 3 16 7

Table 1. Applications used by Das et al. [2019].

Automating NISQ Application Design with MetaQuantum Circuits with Constraints (MQCC) 21

tradeoff. They employ an SMT-based scheduler that judiciously decides whether gates should be

executed in parallel or serially. The schedule of each gate is encoded by two variables—the gate’s

start time and its duration—and these in turn are included in an SMT instance that encodes the

crosstalk along with other constraints based on features of each gate. Ding et al. [2020] proposes

a software solution to alleviate crosstalk by systematically tuning qubit frequencies according

to input programs. However, current quantum hardware often does not allow dynamical qubit

frequency adjustment; e.g., IBM’s current quantum platforms are built with fixed qubit frequencies.

Solution of MQCC. With MQCC We can program a solution like Murali et al. [2020]. As with

multiprogramming, a transpiler encodes different gate schedules via choice variables. It makes use

of the OpenQASM barrier operation described in Section 2, which is also used in Murali et al..

For example, consider the following module for a CNOT gate:

1 module cnotb(c,q1 ,q2){

2 choice (c){

3 0: cnot(q1,q2);

4 1: barrier(q); cnot(q1,q2);

5 }}

When 𝑐 = 0, the gate is applied normally (maximum parallel); Otherwise, suppose the program

declares quantum registers with qreg q[n]. The barrier(q) forces the CNOT to be executed

sequentially only after all gates on q are finished. We encode all those CNOTs that use different
qubits from the their precursor CNOT into this form.

Our goal is to minimize both decoherence error and crosstalk. We define attributes Crosstalk
and Decoherence which take into account the expected appearance of the barrier operations in

the meta-program.

Evaluation. We follow the evaluation methodology of Murali et al. In particular, we use the same

meet-in-the-middle SWAP sequences as their benchmarks. The reason this is a sensible benchmark

is that in superconducting QC systems, CNOTs are permitted only between adjacent qubits. To apply

a CNOT between two far-away qubits, compilers usually insert a sequence of SWAP operations

that move two qubits into adjacent locations through exchanges. For example, in IBMQ Boeblingen,

CNOT 15 8 can be implemented as SWAP 15 16; SWAP 16 11; SWAP 8 7; SWAP 7 12; CNOT 11 12.

The IBMQ Poughkeepsie and Johannesburg machines used in the evaluation by Murali et al.

are currently unavailable, so we use similar SWAP sequences based on IBMQ Boeblingen. We run

8192 trials for each SWAP sequence and consider those with desired outputs to be successful. We

compare the PST of four scheduling strategies: running all instructions serially (Seq); running all
instructions maximally in parallel (Par) which is the default strategy used by Qiskit; the strategy

produced by Murali et al. (Xtalk); and the strategy produced by MQCC. Figure 17 shows the result.

Circuits generated by MQCC always have higher PST than Seq and Par. They have performance

similar to Xtalk.

5.5 Multi-programming with Crosstalk Mitigation
In this section, we combine problems from Section 5.3 and Section 5.4 to show MQCC’s ability to

handle multiple optimization tradeoffs simultaneously.

Motivation. Crosstalk can happenwithin a single application, but also across different applications
that are multi-programmed to be in parallel. MQCC can be used to directly combine the previous

crosstalk mitigation and multiprogramming applications (thus informing scheduling decisions by

crosstalk-induced noise, but can also include other methods for crosstalk mitigation as well: e.g.,

transforming circuits into crosstalk-resistant forms.

22 H. Deng, Y. Peng, M. Hicks, and X. Wu

0 1 2 3 4

5 6 7 8 9

10 11 12 13 14

15 16 17 18 19

Fig. 16. Layout of IBMQ Boeblingen [Mu-
rali et al. 2019a]. Red dashed edges indicate
high crosstalk gate pairs (e.g., the pair of CNOT
0 1 and CNOT 6 7), where the error caused
by their simultaneous execution is much
higher than their independent gate error.

0-8 8-15 7-16 9-16 10-19 14-15 2-12

0.4

0.5

0.6

0.7

0.8

P
ST

Seq Par Xtalk MQCC

Fig. 17. The measured PST for SWAP circuits on
IBMQ Boeblingen using the four schedulers. Higher
PST is better. 𝑎-𝑏 refers a SWAP circuit connecting
qubit 𝑎 and 𝑏.

(a)

(b)

Fig. 18. (a) Two equivalent circuits. (b) The choice of equivalent circuit affects crosstalk with nearby gates.

Figure 18(a) shows two equivalent circuits. In the presence of another CNOT gate, as shown in

Figure 18(b), the first structure may introduce much higher crosstalk than the second one since

the crosstalk between two CNOT gates is much greater than the crosstalk between a CNOT and

a single-qubit gate. One can encode choices between these equivalent forms by MQCC choice

variables, to automatically determine the best one to use.

Solution of MQCC. Our goal is to minimize Depth while keeping for Crosstalk under an upper

bound and the Fidelity above a lower bound
4
, instead of Crosstalk only.

Consider equivalent circuit structures as shown in Figure 19(a), the choice of which can be

encoded as Fig 19(b):

• •
• ≡ •

(a)

1 module twoCnot(c,q1,q2,q3){

2 choice (c){

3 0: cnot(q1,q3); cnot(q2,q3);

4 1: cnot(q2,q3); cnot(q1,q3);

5 }}

(b)

Fig. 19. (a) Equivalent circuit. (b) Encoding as an MQCC program.

This circuit is a common part of many quantum applications such as Bernstein-Vazirani algorithm

(BV) (Figure 20(a)) and Hamiltonian Simulation (HS). For example, the 3-qubit BV circuit in Fig 20(a)

4
We do not add the Decoherence attribute because is effectively represented by Depth, which we are minimizing.

Automating NISQ Application Design with MetaQuantum Circuits with Constraints (MQCC) 23

can be coded as Fig 20(b). We similarly encode Hamiltonian Simulation applications involving

structure in Figure 19(a) into MQCC.

H • H

H • H

H H

(a)

1 module BV3(c,q1,q2,q3){

2 h(q1,q2,q3);

3 twoCnot(c,q1,q2,q3);

4 h(q1,q2,q3);

5 }

(b)

Fig. 20. (a) 3-qubit BV circuit. (b) MQCC meta-program for the 3-qubit BV circuit.

We then reuse the MQCC setup in Section 5.3 to multi-program these applications. MQCC

will determine which form to use for each twoCnot in addition to the choice variables for multi-

programming.

Evaluation. We use the instances of BV and HS shown in Table 1 for evaluation. This size-

restriction is due to the size limit of IBMQ Boebligen. We compare the PST and circuit depth

among three scheduling strategies: running benchmarks in serial (seq), multi-programmed by

MQCC without considering crosstalk (multi-p), and when considering crosstalk (multi-c). As
shown in Fig. 21(b), workloads scheduled by multi-p and multi-c have lower circuit depth than

seq. However, as shown in Fig. 21(a), the PST of multi-p is lower than both seq and multi-c
because of high crosstalk,

5
where the difference is more significant when multi-programming more

applications. In contrast, multi-c could always maintain a comparable PST to seq while reducing

the circuit depth significantly.

5.6 Scalability Study of MQCC for MP and CM tasks
The running time of MQCC on the small-scale benchmarks in Table 1 is less than 0.01s for all

problems. To demonstrate MQCC’s scalability, we measure MQCC’s running time on some larger

benchmarks, which cannot run on current real machines due to hardware constraints. These

benchmarks are collected QASMBench [Li et al. 2021], an open-source OpenQASM benchmark

suite. QASMBench [Li et al. 2021] collects commonly seen quantum algorithms and routines from

a variety of domains with distinct properties. These experiments are carried on Intel Core i7-5960X

in Ubuntu 20.10 environment. The running time of each benchmark is the average of three trials.

Table 2 compares MQCC’s running time with Xtalk’s [Cross 2018] running time for mitigating

the crosstalk in all QASMBench middle-scale benchmarks. Both running times are measured on the

same hardware. MQCC’s running time depends more on the circuit’s structure rather than its size.

For example, the "vqe_uccsd8" is the longest circuit. But most CNOTs in it have to be executed in

serial due to topological constraints and cannot cause any crosstalk. So MQCC can find a solution

for "vqe_uccsd8" in a reasonable time. On the contrary, Xtalk assigns SMT variables and generates

SMT instances for every gate in the circuit, even though some of the gates can never cause crosstalk

due to topological constraints. So Xtalk’s running time highly depends on the number of gates in

the circuit, and it times out when the circuit grows large.

We use MQCC to multi-program QASMBench’s middle-scale benchmarks and the left tabular in

Table 3 shows MQCC’s running time. The complexity of solving MP with MQCC depends on the

number of applications to multi-program. Since these benchmarks are too big to run on today’s

5
There is one exception with the case of bv3-bv4 and it might be caused by the fluctuation of the quantum machine.

24 H. Deng, Y. Peng, M. Hicks, and X. Wu

h
3
-
h
4

b
v
3
-
b
v
4

b
v
3
-
h
3

b
v
4
-
h
4

b
v
3
-
h
3
-
b
v
3

b
v
4
-
h
3
-
b
v
3

0

0.2

0.4

0.6

0.8

P
S
T
(
I
B
M
Q
)

h
3
-
h
4

b
v
3
-
b
v
4

b
v
3
-
h
3

b
v
4
-
h
4

b
v
3
-
h
3
-
b
v
3

b
v
4
-
h
3
-
b
v
3

0.1

0.2

0.3

0.4

P
S
T
(
R
i
g
e
t
t
i
)

seq multi-p multi-c

(a) Probability of Successful Trial (PST) IBMQ Boebligen and
Rigetti Aspen-9 . Here higher PST is better.

h
3
-
h
4

b
v
3
-
b
v
4

b
v
3
-
h
3

b
v
4
-
h
4

b
v
3
-
h
3
-
b
v
3

b
v
4
-
h
3
-
b
v
3

5

10

15

C
i
r
c
u
i
t
D
e
p
t
h

(b) Circuit Depth. Here lower circuit depth
is better.

Fig. 21. Multi-Programming with Crosstalk Mitigation.

quantum hardware, we use the architecture information from qiskit’s noise simulator. Then we

choose those benchmarks for which MQCC needs more than 0.1s to mitigate their crosstalk (i.e.,

benchmark 1,3,4,5,6,7,12,13,14,16,17) and group them in pairs to test MQCC’s MP-CM running time.

We discard benchmark 9 since MQCC already times out(> 60min) for mitigating its crosstalk. The

right tabular in Table 3 shows this result.

ID Benchmarks #Qubits #Gates #CNOT Time (s): MQCC Time (s): Xtalk
1 adder 10 142 65 0.1120 0.2645

2 bv 14 41 13 0.0251 0.0143
3 seca 11 216 84 1.983 3.567

4 ising 10 480 90 1.932 237.8

5 multiply 13 98 40 0.2670 0.1121
6 qf21 15 311 115 0.1097 22.18

7 qft 15 540 210 34.98 12 min

8 qpe 9 123 43 0.0422 0.3512

9 sat 11 679 252 Timeout Timeout

10 cc 12 22 11 0.0231 0.00312
11 simons 6 44 14 0.0341 0.00512
12 vqe_uccsd6 6 2282 1052 1.847 Timeout

13 vqe_uccsd8 8 10808 5488 15.58 Timeout

14 qaoa 6 270 54 0.202 13.21

15 bb84 8 27 0 0.0092 0.0021
16 dnn 8 1008 192 5.674 Timeout

17 multiplier 15 574 246 16 min 46 min

Table 2. Running time of solving CM by MQCC for all middle-scale circuits in QASMBench. The benchmarks
are described in Li et al. [2021]. Timeout is 60 minutes, shortest times in bold.

5.7 Sensitivity Study of MQCC for MP and CM tasks
In this section, we discuss how the input parameters for MP and CM tasks affect the structure of

output circuits from MQCC.

Fig 22 shows the Depth Growth Rate of output circuits from MQCC for benchmarks vqe_uccsd8,
vqe_uccsd6 and dnn (the largest three in middle QASMBench, see Table 2) for CM task under

different error proportions. In CM task, MQCC receives an input circuit from the user and uses

Automating NISQ Application Design with MetaQuantum Circuits with Constraints (MQCC) 25

ID MP Running time (s)
1-5 0.212

1-8 1.89

1-11 12.6

1-14 101.2

1-17 15min

ID MP-CM Running time (s)
1,3 2.61

4,5 21.27

6,7 65.12

12,13 36.92

14,16 16.59

16,17 Timeout

Table 3. Left table: Running time of multi-programming the benchmarks from 𝑎 to 𝑏 in Table 2 by MQCC.
Right table: Running time of MQCC for handling multi-programming and crosstalk mitigation simultane-
ously.

0 5 10 15 20

0

0.8

1.6

2.4

𝑤𝑑𝑒𝑐𝑜ℎ𝑒𝑟𝑒/𝑤𝑐𝑟𝑜𝑠𝑠

D
e
p
t
h
G
r
o
w
t
h
R
a
t
e
·1
0
−2

vqe_uccsd8

vqe_uccsd6

dnn

Fig. 22. Depth growth rate of the circuit gen-
erated by MQCC for CM task under different
error proportion.

10
−3

10
−2

10
−1

5

10

15

20

25

30

Error Threshold

C
i
r
c
u
i
t
D
e
p
t
h

bv4-bv3-toff3 bv3-bv3-bv4

bv3-bv3-fred3

Fig. 23. Circuit Depth under different error
threshold for MP task.

barrier operations to serialize gates to mitigate crosstalk; these operations increase the circuit’s

depth. So we define depth growth rate of the circuit 𝐶 generated by MQCC as (𝑑𝐶 − 𝑑𝑖)/𝑑𝑖 , where
𝑑𝐶 is 𝐶’s depth with barriers added and 𝑑𝑖 is the depth of the circuit MQCC receives as input. Thus,

higher circuit depth growth rate indicates MQCC serializes more gates.𝑤𝑑𝑒𝑐𝑜ℎ𝑒𝑟𝑒/𝑤𝑐𝑟𝑜𝑠𝑠 indicates

the proportion of decoherence to crosstalk in the final error: When𝑤𝑑𝑒𝑐𝑜ℎ𝑒𝑟𝑒/𝑤𝑐𝑟𝑜𝑠𝑠 is 0, crosstalk

is the only error and MQCC tries to avoid any crosstalk by serializing some gates, which increases

the circuit’s depth. When 𝑤𝑑𝑒𝑐𝑜ℎ𝑒𝑟𝑒/𝑤𝑐𝑟𝑜𝑠𝑠 is 20, decoherence is the dominant error and MQCC

decides to run the circuit in maximum parallel to minimize the decoherence, which makes the

depth growth rate 0.

Fig 23 shows the depth of circuits generated byMQCC forMP task under different error thresholds.

The benchmark is described in Section 5.3. We suppose measurement and qubit reset operations

add one unit to the depth. When the input error threshold is 10
−3

(used for the experiments in

Fig 15), MQCC uses qubits with the highest fidelity to run all applications sequentially, which leads

to the deepest circuit. When the error threshold becomes larger, MQCC utilizes qubits with lower

fidelity to run applications in parallel, leading to circuits with less depth.

6 CONCLUSION
We presentMQCC, a meta-programming framework, to assist NISQ application designers to identify

the best balance of trade-offs among heterogeneous factors specific to the targeted application and

quantum hardware in an automatic way. We also demonstrate MQCC ’s expressiveness through

an extensive case study, where we showcase MQCC programs that easily implement ideas from

26 H. Deng, Y. Peng, M. Hicks, and X. Wu

previous examples of NISQ application design, either theoretical or with one-off automation, which

produces comparable results and exhibits certain advantages.

MQCC constitutes the first step toward a fully automatic design framework for NISQ applications.

Ideally, it would be desirable to develop more automation in leveraging MQCC framework from

domain problems as well as to improve the scalability of MQCC with more efficient cost expression

generations.

ACKNOWLEDGEMENT
This project was partially funded by the U.S. Department of Energy, Office of Science, Office of

Advanced Scientific Computing Research, Quantum Testbed Pathfinder Program under Award

Number DE-SC0019040 and Accelerated Research in Quantum Computing under Award Number

DE-SC0020273.

CODE AVAILABILITY
The code for MQCC and the experiments we carried out is available at https://github.com/sqrta/

MQCC.

REFERENCES
Dave Bacon. 2006. Operator quantum error-correcting subsystems for self-correcting quantum memories. Physical Review

A 73, 1 (2006), 012340.

Adriano Barenco, Artur Ekert, Kalle-Antti Suominen, and Päivi Törmä. 1996. Approximate quantum Fourier transform and

decoherence. Physical Review A 54, 1 (1996), 139.

David Beazley. 2018. PLY (Python Lex-Yacc). https://www.dabeaz.com/ply/.

Ethan Bernstein and Umesh Vazirani. 1997. Quantum complexity theory. SIAM Journal on computing 26, 5 (1997), 1411–1473.
A. R. Calderbank and Peter W. Shor. 1996. Good quantum error-correcting codes exist. Phys. Rev. A 54 (Aug 1996), 1098–1105.

Issue 2. https://doi.org/10.1103/PhysRevA.54.1098

Michael Carbin, Sasa Misailovic, and Martin C. Rinard. 2013. Verifying Quantitative Reliability for Programs That Execute

on Unreliable Hardware. SIGPLAN Not. 48, 10 (Oct. 2013), 33–52. https://doi.org/10.1145/2544173.2509546

Rui Chao and Ben W Reichardt. 2018. Quantum error correction with only two extra qubits. Physical review letters 121, 5
(2018), 050502.

Andrew Cross. 2018. The IBM Q experience and QISKit open-source quantum computing software. In APS March Meeting
Abstracts, Vol. 2018. L58–003.

Andrew W Cross, Lev S Bishop, John A Smolin, and Jay M Gambetta. 2017. Open quantum assembly language. arXiv
preprint arXiv:1707.03429 (2017).

Poulami Das, Swamit S Tannu, Prashant J Nair, and Moinuddin Qureshi. 2019. A case for multi-programming quantum

computers. In Proceedings of the 52nd Annual IEEE/ACM International Symposium on Microarchitecture. 291–303.
Leonardo De Moura and Nikolaj Bjørner. 2008. Z3: An efficient SMT solver. In International conference on Tools and

Algorithms for the Construction and Analysis of Systems. Springer, 337–340.
Yongshan Ding, Pranav Gokhale, Sophia Fuhui Lin, Richard Rines, Thomas Propson, and Frederic T Chong. 2020. Systematic

crosstalk mitigation for superconducting qubits via frequency-aware compilation. In 2020 53rd Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO). IEEE, 201–214.

David P DiVincenzo and Panos Aliferis. 2007. Effective fault-tolerant quantum computation with slow measurements.

Physical review letters 98, 2 (2007), 020501.
Mohammad Javad Dousti, Alireza Shafaei, and Massoud Pedram. 2015. Squash 2: a hierarchical scalable quantum mapper

considering ancilla sharing. arXiv preprint arXiv:1512.07402 (2015).
Jean-Christophe Filliâtre and Andrei Paskevich. 2013. Why3: Where Programs Meet Provers. In Proceedings of the 22nd

European Conference on Programming Languages and Systems (Rome, Italy) (ESOP’13). Springer-Verlag, Berlin, Heidelberg,
125–128. https://doi.org/10.1007/978-3-642-37036-6_8

Austin G Fowler, Matteo Mariantoni, John M Martinis, and Andrew N Cleland. 2012. Surface codes: Towards practical

large-scale quantum computation. Physical Review A 86, 3 (2012), 032324.

Daniel Gottesman. 1997. Stabilizer codes and quantum error correction. Ph.D. Dissertation.
Daniel Gottesman. 2010. An introduction to quantum error correction and fault-tolerant quantum computation. In Quantum

information science and its contributions to mathematics, Proceedings of Symposia in Applied Mathematics, Vol. 68. 13–58.

https://github.com/sqrta/MQCC
https://github.com/sqrta/MQCC
https://www.dabeaz.com/ply/
https://doi.org/10.1103/PhysRevA.54.1098
https://doi.org/10.1145/2544173.2509546
https://doi.org/10.1007/978-3-642-37036-6_8

Automating NISQ Application Design with MetaQuantum Circuits with Constraints (MQCC) 27

Lov K. Grover. 1996. A Fast QuantumMechanical Algorithm for Database Search. In Proceedings of the Twenty-Eighth Annual
ACM Symposium on Theory of Computing (Philadelphia, Pennsylvania, USA) (STOC ’96). Association for Computing

Machinery, New York, NY, USA, 212–219. https://doi.org/10.1145/237814.237866

Sumit Gulwani, Susmit Jha, Ashish Tiwari, and Ramarathnam Venkatesan. 2011. Synthesis of Loop-Free Programs. In

PLDI’11, June 4-8, 2011, San Jose, California, USA (pldi’11, june 4–8, 2011, san jose, california, usa ed.). https://www.

microsoft.com/en-us/research/publication/synthesis-loop-free-programs/

Robin Harper, Steven T Flammia, and Joel J Wallman. 2020. Efficient learning of quantum noise. Nature Physics 16, 12 (2020),
1184–1188.

AdamHolmes, Yongshan Ding, Ali Javadi-Abhari, Diana Franklin, Margaret Martonosi, and Frederic T Chong. 2019. Resource

optimized quantum architectures for surface code implementations of magic-state distillation. Microprocessors and
Microsystems 67 (2019), 56–70.

Shih-Han Hung, Kesha Hietala, Shaopeng Zhu, Mingsheng Ying, Michael Hicks, and Xiaodi Wu. 2019. Quantitative

robustness analysis of quantum programs. Proceedings of the ACM on Programming Languages 3, POPL (2019), 1–29.

IBM. 2021. IBM Q Device Information. https://quantum-computing.ibm.com/docs/manage/backends/.

Emanuel Knill. 2005a. Quantum computing with realistically noisy devices. Nature 434, 7029 (2005), 39–44.
Emanuel Knill. 2005b. Scalable quantum computing in the presence of large detected-error rates. Physical Review A 71, 4

(2005), 042322.

Raymond Laflamme, Cesar Miquel, Juan Pablo Paz, and Wojciech Hubert Zurek. 1996. Perfect quantum error correcting

code. Physical Review Letters 77, 1 (1996), 198.
Ang Li, Samuel Stein, Sriram Krishnamoorthy, and James Ang. 2021. QASMBench: A Low-level QASM Benchmark Suite for

NISQ Evaluation and Simulation. arXiv preprint arXiv:2005.13018 (2021).
Giulia Meuli, Mathias Soeken, Martin Roetteler, and Thomas Häner. 2020. Automatic accuracy management of quantum

programs via (near-) symbolic resource estimation. arXiv preprint arXiv:2003.08408 (2020).
Sasa Misailovic, Michael Carbin, Sara Achour, Zichao Qi, and Martin C. Rinard. 2014. Chisel: Reliability- and Accuracy-

Aware Optimization of Approximate Computational Kernels. In Proceedings of the 2014 ACM International Conference on
Object Oriented Programming Systems Languages & Applications (Portland, Oregon, USA) (OOPSLA ’14). Association for

Computing Machinery, New York, NY, USA, 309–328. https://doi.org/10.1145/2660193.2660231

PrakashMurali, Jonathan Baker, Ali Javadi-Abhari, Frederic Chong, andMargaretMartonosi. 2019a. Noise-Adaptive Compiler

Mappings for Noisy Intermediate-Scale Quantum Computers. 1015–1029. https://doi.org/10.1145/3297858.3304075

Prakash Murali, Ali Javadi-Abhari, Frederic Chong, and Margaret Martonosi. 2019b. Formal Constraint-based Compilation

for Noisy Intermediate-Scale Quantum Systems. Microprocessors and Microsystems 66 (02 2019). https://doi.org/10.1016/j.

micpro.2019.02.005

Prakash Murali, David C McKay, Margaret Martonosi, and Ali Javadi-Abhari. 2020. Software mitigation of crosstalk on

noisy intermediate-scale quantum computers. In Proceedings of the Twenty-Fifth International Conference on Architectural
Support for Programming Languages and Operating Systems. 1001–1016.

Michael A Nielsen and Isaac Chuang. 2002. Quantum computation and quantum information.

Siyuan Niu and Aida Todri-Sanial. 2021. Analyzing crosstalk error in the NISQ era. In 2021 IEEE Computer Society Annual
Symposium on VLSI (ISVLSI). IEEE, 428–430.

Ben W Reichardt. 2020. Fault-tolerant quantum error correction for steane’s seven-qubit color code with few or no extra

qubits. Quantum Science and Technology 6, 1 (2020), 015007.

Mohan Sarovar, Timothy Proctor, Kenneth Rudinger, Kevin Young, Erik Nielsen, and Robin Blume-Kohout. 2020. Detecting

crosstalk errors in quantum information processors. Quantum 4 (2020), 321.

Peter W. Shor. 1995. Scheme for reducing decoherence in quantum computer memory. Phys. Rev. A 52 (Oct 1995),

R2493–R2496. Issue 4. https://doi.org/10.1103/PhysRevA.52.R2493

Peter W. Shor. 1997. Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer.

SIAM J. Comput. 26, 5 (Oct. 1997), 1484–1509. https://doi.org/10.1137/S0097539795293172

Saurabh Srivastava, Sumit Gulwani, Swarat Chaudhuri, and Jeffrey S. Foster. 2011. Path-based Inductive Synthesis for

Program Inversion. In PLDI’11, June 4-8, 2011, San Jose, California, USA (pldi’11, june 4–8, 2011, san jose, california, usa

ed.). https://www.microsoft.com/en-us/research/publication/path-based-inductive-synthesis-program-inversion/

Saurabh Srivastava, Sumit Gulwani, and Jeffrey S. Foster. 2009. VS3: SMT Solvers for Program Verification. In Computer
Aided Verification, Ahmed Bouajjani and Oded Maler (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 702–708.

Saurabh Srivastava, Sumit Gulwani, and Jeffrey S. Foster. 2010. From Program Verification to Program Synthesis. In POPL’10,
January 17-23, 2010, Madrid, Spain (popl’10, january 17–23, 2010, madrid, spain ed.). https://www.microsoft.com/en-

us/research/publication/program-verification-program-synthesis/

A. M. Steane. 1996. Error Correcting Codes in Quantum Theory. Phys. Rev. Lett. 77 (Jul 1996), 793–797. Issue 5. https:

//doi.org/10.1103/PhysRevLett.77.793

https://doi.org/10.1145/237814.237866
https://www.microsoft.com/en-us/research/publication/synthesis-loop-free-programs/
https://www.microsoft.com/en-us/research/publication/synthesis-loop-free-programs/
https://quantum-computing.ibm.com/docs/manage/backends/
https://doi.org/10.1145/2660193.2660231
https://doi.org/10.1145/3297858.3304075
https://doi.org/10.1016/j.micpro.2019.02.005
https://doi.org/10.1016/j.micpro.2019.02.005
https://doi.org/10.1103/PhysRevA.52.R2493
https://doi.org/10.1137/S0097539795293172
https://www.microsoft.com/en-us/research/publication/path-based-inductive-synthesis-program-inversion/
https://www.microsoft.com/en-us/research/publication/program-verification-program-synthesis/
https://www.microsoft.com/en-us/research/publication/program-verification-program-synthesis/
https://doi.org/10.1103/PhysRevLett.77.793
https://doi.org/10.1103/PhysRevLett.77.793

28 H. Deng, Y. Peng, M. Hicks, and X. Wu

Andrew M Steane. 1997. Active stabilization, quantum computation, and quantum state synthesis. Physical Review Letters
78, 11 (1997), 2252.

Andrew M Steane. 2002. Fast fault-tolerant filtering of quantum codewords. arXiv preprint quant-ph/0202036 (2002).
Andrew M Steane. 2006. A tutorial on quantum error correction. Quantum Computers, Algorithms and Chaos (2006), 1–32.
Krysta M Svore, Alfred V Aho, Andrew W Cross, Isaac Chuang, and Igor L Markov. 2006. A layered software architecture

for quantum computing design tools. Computer 39, 1 (2006), 74–83.
Runzhou Tao, Yunong Shi, Jianan Yao, John Hui, Frederic T. Chong, and Ronghui Gu. 2021. Gleipnir: Toward Practical Error

Analysis for Quantum Programs. In Proceedings of the 42nd ACM SIGPLAN International Conference on Programming
Language Design and Implementation (Virtual, Canada) (PLDI 2021). Association for Computing Machinery, New York,

NY, USA, 48–64. https://doi.org/10.1145/3453483.3454029

Emina Torlak and Rastislav Bodik. 2013. Growing Solver-Aided Languages with Rosette. In Proceedings of the 2013 ACM
International Symposium on New Ideas, New Paradigms, and Reflections on Programming & Software (Indianapolis, Indiana,
USA) (Onward! 2013). Association for Computing Machinery, New York, NY, USA, 135–152. https://doi.org/10.1145/

2509578.2509586

Emina Torlak and Rastislav Bodik. 2014. A Lightweight Symbolic Virtual Machine for Solver-Aided Host Languages.

SIGPLAN Not. 49, 6 (June 2014), 530–541. https://doi.org/10.1145/2666356.2594340

Theodore J Yoder and Isaac H Kim. 2017. The surface code with a twist. Quantum 1 (2017), 2.

https://doi.org/10.1145/3453483.3454029
https://doi.org/10.1145/2509578.2509586
https://doi.org/10.1145/2509578.2509586
https://doi.org/10.1145/2666356.2594340

Automating NISQ Application Design with MetaQuantum Circuits with Constraints (MQCC) 29

A APPENDIX
A.1 Proof of Theorem 4.1

Proof. Before we start, we show that for any statement 𝑆 , 𝜎 ∈ Σ and state 𝑠 : 𝑇 , where no

choice is nested inside case, there is

𝐴.value([[𝑆]]𝐴 (𝜎, 𝑠)) = 𝐴.value(𝑠) +𝐴.value([[𝑆]]𝐴 (𝜎,𝐴.empty)).

Notice that by choosing 𝑠 = 𝐴.empty in above equation, we have 𝐴.value(𝐴.empty) = 0.

This can be proved by induction on 𝑆 . For the case that 𝑆 is an operation or a case clause, it is by
the additive properties of the attribute. For 𝑆 = 𝑆1; 𝑆2, notice that

𝐴.value([[𝑆1; 𝑆2]]𝐴 (𝜎, 𝑠))
= 𝐴.value([[𝑆2]]𝐴 (𝜎, [[𝑆1]]𝐴 (𝜎, 𝑠)))
= 𝐴.value([[𝑆1]]𝐴 (𝜎, 𝑠)) +𝐴.value([[𝑆2]]𝐴 (𝜎,𝐴.empty))
= 𝐴.value(𝑠) +𝐴.value([[𝑆1]]𝐴 (𝜎,𝐴.empty))

+𝐴.value([[𝑆2]]𝐴 (𝜎,𝐴.empty))
= 𝐴.value(𝑠) +𝐴.value([[𝑆2]]𝐴 (𝜎, [[𝑆1]]𝐴 (𝜎,𝐴.empty)))
= 𝐴.value(𝑠) +𝐴.value([[𝑆1; 𝑆2]]𝐴 (𝜎,𝐴.empty)) .

For 𝑆 = choice(var){𝑖 → 𝑆𝑖 }, let 𝑘 be 𝜎 [var]. We equates:

𝐴.value([[𝑆]]𝐴 (𝜎, 𝑠))
= 𝐴.value([[𝑆𝑘]]𝐴 (𝜎, 𝑠))
= 𝐴.value(𝑠) +𝐴.value([[𝑆𝑘]]𝐴 (𝜎,𝐴.empty))
= 𝐴.value(𝑠) +𝐴.value([[𝑆]]𝐴 (𝜎,𝐴.empty)) .

Wenow prove the theorem by induction on 𝑆 . Notice that
∑

𝑖∈Σvar 𝛿
𝑖
var = 1, so we have

∑
𝜎 ∈Σ 𝛿Vars,𝜎 ·

𝑟 = 𝑟 for any constant 𝑟 ∈ R.
For the base case where 𝑆 = opID(exps, regs), and 𝑆 = case(creg){𝑖 → 𝑆𝑖 }, it is true by the above

equation.

To show the target for 𝑆 = 𝑆1; 𝑆2, we have

cost
+
𝐴 (𝑆1; 𝑆2)

= cost
+
𝐴 (𝑆1) + cost

+
𝐴 (𝑆2)

= cost𝐴 (𝑆1) + cost𝐴 (𝑆2)

=
∑
𝜎 ∈Σ

𝛿Vars,𝜎 · (𝐴.value(𝐴.empty) + value([[𝑆1]]𝐴 (𝜎,𝐴.empty))

+𝐴/value([[𝑆2]]𝐴 (𝜎,𝐴.empty)))

=
∑
𝜎 ∈Σ

𝛿Vars,𝜎 · value([[𝑆1; 𝑆2]]𝐴 (𝜎, empty)) .

Notice that

∑
𝑖∈𝑖 𝛿

𝑖
var𝛿Var,𝜎 = 𝛿Vars,𝜎 since

𝛿𝑖var𝛿Var,𝜎 = 𝛿𝑖var𝛿
𝜎 [var]
var

∏
𝑢∈Vars\{var}

𝛿
𝜎 [𝑢]
𝑢

30 H. Deng, Y. Peng, M. Hicks, and X. Wu

is non-zero only when 𝑖 = 𝜎 [var]. So for 𝑆 = choice(var){𝑖 → 𝑆𝑖 } we have
cost

+
𝐴 (𝑆)

=
∑
𝑖∈𝑖

𝛿𝑖varcost
+
𝐴 (𝑆𝑘)

=
∑
𝑖∈𝑖

𝛿𝑖var

∑
𝜎 ∈Σ

𝛿Var,𝜎𝐴.value(
[[
𝑆𝜎 [var]

]]
𝐴
(𝜎,𝐴.empty))

=
∑
𝜎 ∈Σ

𝛿Var,𝜎𝐴.value(
[[
𝑆𝜎 [var]

]]
𝐴
(𝜎,𝐴.empty))

= cost𝐴 (𝑆).
□

	Abstract
	1 Introduction
	2 Preliminaries: Quantum Programming
	3 Meta Quantum Circuits with Constraints
	3.1 MQCC Overview
	3.2 Example: Fault-tolerant Quantum Error Correction
	3.3 MQCC Solver
	3.4 Construction of MQCC Meta-programs
	3.5 Implementation of MQCC

	4 Formalization of MQCC
	4.1 Language Syntax
	4.2 Attribute Semantics
	4.3 Additive Attributes
	4.4 Examples of Attributes
	4.5 Limitations

	5 Case Studies
	5.1 Fault-tolerant Quantum Error Correction
	5.2 Trade-off between Accuracy and Resources
	5.3 Multi-Programming Quantum Computers
	5.4 Circuit Reschedule for Crosstalk Mitigation
	5.5 Multi-programming with Crosstalk Mitigation
	5.6 Scalability Study of MQCC for MP and CM tasks
	5.7 Sensitivity Study of MQCC for MP and CM tasks

	6 Conclusion
	Code availability
	References
	A Appendix
	A.1 Proof of Theorem 4.1

